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 ملخص

 

 بالإضافةالبروتونات و النيوترونات  من الموجودة في درجات حرارة منخفضة تتكون و قليلة الكثافةن المادة النووية إ

خصائص هذه الأنوية تتأثر بوجود  .هذه والذي هو موضوع دراستناكالديوترون، د من الأنوية الخفيفة العدي إلى

كما أن طاقة الربط لها أقل مما هي عليه في الأنوية العادية  ،الحرة الوسط المحيط من الأنوية الأخرى و النيوكليونات

حتى تصل كثافة  كثافة هذه المادةتقل بازدياد  الموجودة في الفراغ و غير محاطة بهذه المادة النووية، وطاقة الربط

، البروتون الأساسيةمكوناته  إلىالتي يتفكك عندها الديوترون هي الكثافة و، ما يسمى بكثافة "مُتْ" المادة النووية إلى

 و النيوترون.

 بعين الاعتبار تأثير باوليآخذين في بحثنا هذا  بدراسة تأثير المادة النووية على طاقة الربط للديوترون  و قد قمنا

بعين الاعتبار تغير اقتران  أخذنا كما .غاوسيالجهد ال حيث استخدمناكمية التحرك للديوترون  تأثير إلىضافة بالإ

 .التباينكثافة المادة النووية المحيطة و ذلك باستخدام مبدأ  ىالدالة و اعتماده عل
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ABSTRACT 
 

 

Nuclear clusters such as deuterons exist in nuclear matter at low density in addition to the 

unbound protons and neutrons. The properties of these clusters including their binding 

energies are affected by the surrounding vapor. Their binding energies are less than the 

corresponding regular nuclei in vacuum and these binding energies decrease as the vapor 

density increases. When the density reaches the Mott density, at which the deuteron 

dissolves and becomes unbound, the Mott transition occurs, the deuteron dissolves and 

becomes unbound. In our research we study the binding energy of a deuteron immersed 

in a vapor of nucleons as a function of the nuclear number density by taking into account 

the Pauli blocking shift and the center of mass (CM) momentum. We also include the 

change in the internal wavefunction in the presence of the vapor by using the Variational 

Principle. 
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CHAPTER 1  

INTRODUCTION 

The properties of the nucleus and its physical behavior can be studied using different 

nuclear models. One of these models is the liquid drop model which describes finite 

nuclei. In this model the nucleus is considered as an incompressible liquid droplet with a 

sharp boundary and uniform density with the existence of the coulomb energy associated 

with the protons. The particles at the surface of the nucleus interact less than the particles 

in the interior of the nucleus and this is similar to the surface tension of the liquid.  

We know that the volume of a droplet of a liquid increases with increasing the number of 

atoms in it. The same happens with the nucleus in the liquid drop model, the volume of 

the nucleus is proportional to the number of nucleons contained in it [1-2]. 

The features of the liquid drop model lead to the Bethe - Weizsäcker formula for the 

binding energy of a finite nucleus of   protons and    (   ) neutrons [3] 

                      (   )         
 

    
 (   )

 
 
 

      
(    ) 

 
                      (1.1) 

The parameters in the equation (1.1) above are [3] 

  : volume term        

  : surface term        

  : coulomb term         

     : symmetry term        

 
Table 1.1: The parameters in Bethe -Weizsäcker formula  
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The first term is the volume term, the volume   of the nucleus is proportional to    

                                                 
 

 
                                                                (1.2)                                                                                                                                                            

where   is the radius of the nucleus is given by the equation 

                                                      
                                                           (1.3) 

with           and   is the number of nucleons. 

By substituting (1.3) in (1.2) we can notice that the volume is proportional to the nucleon 

number  . 

The decrease in the binding energy due to the number of nucleons on the surface is given 

by the second term. The third term results from the repulsive coulomb interaction 

between all protons in the nucleus. Each pair of protons contributes to the Coulomb term 

equally, the number of protons is Z, so the number of proton pairs is Z(Z-1)/2. The fourth 

term which includes the quadratic dependence on (    ) is very important for light 

nuclei, it expresses the fact that nuclei with   
 

 
 are expected to be more stable because 

the protons and the neutrons will occupy the lowest energy state. This term is called the 

symmetry term because it tends to make the nucleus symmetric in protons and neutrons 

   . The last term in equation (1.1)        is the pairing energy, it takes into account 

the tendency of like nucleons to form pairs in order to decrease the energy of the nuclear 

system. If both N and Z are odd the nucleus will usually be unstable and one of the odd 

neutrons will be transformed into a proton or vice versa by beta decay to form a pair, 

while if both N and Z are even the nucleus will be more tightly bound than if they are odd 
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integers. But if the total number of nucleons is odd (N or Z is odd) the pairing energy 

term has no contribution [1, 4] and this is clear from the values of the parameter       . 

If we divide equation (1.1) by   we get the binding energy per nucleon for finite nuclei  

 (   )

 
    

  

    
   

 (   )

    
      

(   ) 

  
 

      

 
 

In [4] it is shown that the value of binding energy per nucleon is about 8 MeV which is 

relatively constant except for light nuclei with     . 

Another characteristic for finite nuclei is their density ( ) which is about: 

                    in the core of the nucleus but this quantity decreases gradually 

to zero with radial distance in the surface region. We can notice this from the figure (1.1) 

below which shows the charge density (protons density) for oxygen (
16

O), nickel (
58

Ni), 

and lead (
208

Pb) [4].  

 

 

 

 

 

 

 

 

 

 

In figure (1.1), if we look at heavy nuclei like lead (Pb
208

), it is clear that the charge 

density is roughly constant, about 0.07 protons/   . Since we can consider the neutron 

Figure 1.1: Charge density for several nuclei as a function of radial distance r 
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and proton densities are the same, the nucleon density for lead will be approximately 

                 . But this value drops slowly to zero over a distance t of about 2.3 

fm. The parameter t is called the skin thickness parameter and it represents the distance at 

which the charge density of the nucleus drops to 10% of its central value. The value of t 

is approximately the same for all nuclei (2.3 fm), it does not depend on the size of the 

nucleus. 

For ideal system of interacting nucleons with uniform density we use nuclear matter 

(infinite nuclear matter) instead of finite nuclei. In nuclear matter the number of nucleons 

(A) is infinite and the Coulomb force is switched off. For more simplification, we can 

assume that nuclear matter is symmetric so      

The binding energy per nucleon for nuclear matter and the saturation density are 

fundamental constants of nature [5]. These constants can be determined from two 

different sources, the Bethe -Weizsäcker formula and electron scattering on finite nuclei. 

To find the binding energy per nucleon for symmetric nuclear matter we can use the 

Bethe -Weizsäcker formula. Since A is infinite and the Coulomb force is switched off 

and     all terms in the formula vanish except the volume term. So the binding energy 

per nucleon for nuclear matter is  

 
 (   )

 
    

From the table (1.1) above, the value of    is        and hence the binding energy per 

nucleon for nuclear matter is        which differs from the value of 8 MeV for finite 

nuclei.  

The saturation density of nuclear matter can be obtained from electron scattering on finite 

nuclei and its value is about [3] 
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 This density is uniform throughout the nuclear volume and it is the central density of 

heavy nuclei. Due to the absence of a surface region in nuclear matter, the saturation 

density differs from the density for finite nuclei which is approximately 

                   

Nuclear matter exists in two phases; it can exist in a dilute gaseous phase or it can exist in 

a liquid phase with closely interacting nucleons. The transition between these phases can 

occur; the nuclear matter transfers from the liquid phase to the gaseous one where the 

average inter-particle distance is much larger than the range of the inter-particle 

interaction [6]. The liquid-gas phase transition occurs in general in systems with short-

range repulsive and longer-range attractive forces [7]. The transition between the phases 

occurs at all temperatures below a critical temperature. At these temperatures, the two 

distinct phases coexist; matter inside the nucleus is in the liquid phase while the 

surrounding external matter is in the gaseous phase [8]. The behavior of the phase 

diagram of nuclear matter isotherms introduces theoretical evidence of the coexistence of 

these phases. These isotherms are very similar to those obtained from a Van der Waal 

equation of state [9]. At the critical temperature, the distinction between these phases 

disappears. Above this temperature only the gaseous phase can exist. In [6] Jaqaman 

investigated the occurrence of liquid-gas phase transition in finite nuclei and he found 

that there is a reduction in the critical temperature as compared to the infinite nuclear 

matter. 
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At very low densities, less than one tenth of the nuclear saturation density   , nuclear 

matter exists in a dilute gaseous phase while at higher densities it exists in liquid phase 

with closely-interacting nucleons [10]. 

Much below the saturation density, at one hundredth or one thousandth of saturation 

density, clusters are formed in the gaseous phase to minimize the energy of the system 

[11-12]. The binding energy for these clusters depends on the density of the surrounding 

vapor. As the density of the surrounding vapor approaches zero the binding energy for 

the light clusters becomes very close to the binding energy for isolated nuclei with the 

same number of protons and neutrons. The formation of light clusters, up to the alpha 

particle, in nuclear matter at finite temperature and very low density was investigated by 

Typel et. al [11]. They also studied the dissolution of these clusters due to medium effect 

using the microscopic quantum statistical (QS) approach and a generalized relativistic 

mean field (RMF) model. 

In 2006, the formation of clusters in low density nuclear matter composed of protons, 

neutrons, and alpha particles was studied in [12] using the virial expansion. 

Beyer et. al. [13] found that for the clusters immersed in a vapor of nucleons, the Pauli 

blocking has to be taken into consideration in addition to the self energy shift. The Pauli 

blocking effect is related to the Pauli Exclusion Principle which prevents two identical 

nucleons from occupying the same quantum state. For clusters immersed in a vapor of 

nucleons, Pauli blocking effect is caused by the indistinguishability between the nucleons 

inside the clusters and the free nucleons in the surrounding vapor. As a result, the total 

wavefunction involving the nucleons inside and outside the nucleus should be 
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antisymmetric [1, 3]. By increasing the density of the nucleons in the vapor the binding 

energy of the cluster is decreased because of Pauli blocking [13]. When the density 

reaches the Mott density, at which the cluster has zero binding energy, the Mott transition 

occurs, the cluster dissolves and becomes unbound and this depends on the momentum of 

its center of mass and on the temperature. 

In our work, we are interested in studying the medium effect on the deuteron which is the 

simplest bound state of nucleons since it consists of a proton and a neutron only [1]. We 

will see what will happen for the binding energy of the deuteron when it is immersed in a 

vapor of nucleons and what is the effect of Pauli blocking on the Mott density.  

In studies [11, 14], the formula for Pauli blocking was found indirectly by calculating the 

Pauli blocking energy shift at zero CM momentum for the deuteron, and then some 

approximations and fits were used such as angular averaging. 

In a recent work, Abdul-Rahman, Alstaty and Jaqaman [10] used the methods of quantum 

and statistical mechanics to calculate the binding energy for the deuteron in low density 

nuclear matter and to get a formula for the Pauli blocking shift that explicitly depends on 

the deuteron CM momentum with no fits. They found the Mott densities at different 

temperatures, for the two cases of zero and nonzero CM momenta for the deuterons and 

compared them with values obtained by Typel et al [11]. They found that the Mott 

densities they got at low temperatures are approximately twice larger than the densities 

obtained by Typel et al and at high temperatures they are three times those of Typel et al. 

In [10] it was assumed that the internal wavefunction of the deuteron is not affected by 

the presence of the vapor. What we want to do in the present work is to include the 
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change in the internal wavefunction in the presence of the vapor by using the variational 

principle. 

We will start this thesis by explaining the main properties of the deuteron in addition to 

the main characteristics of the nucleon-nucleon interaction. We will do this in chapter 2.  

In chapter 3, we will construct the wavefunction for the deuteron-nucleon system where 

the deuteron and the free nucleon are confined in a small box, then we will find the 

energy expectation value for the deuteron-nucleon system and write the binding energy 

formula including all nucleons in the surrounding vapor. 

 The expectation value for the quantities which include the CM momenta is calculated in 

chapter 4 at high temperatures and at absolute zero temperature. The  depth and the range 

for the Gaussian potential are determined in chapter 5. In the same chapter, the Gaussian 

wavefunction parameter ( ) is evaluated for the case where the wavefunction is not 

affected by the vapor density, then the results for binding energy and Mott density are 

compared with the results in [10]. In chapter 6, the wavefunction is allowed to vary with 

the vapor density, and the variational principle is used to evaluate the value of   to find 

the Mott density for the deuteron at different temperatures. At the end, in chapter 7, we 

will summarize and discuss our results  
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Chapter 2 

THE DEUTERON 

In this chapter, we will discuss the main properties of the deuteron and some 

characteristics of the nucleon-nucleon interaction. 

2.1 PROPERTIES OF THE DEUTERON 

The deuteron is the simplest two-nucleon bound system; it consists of a proton and a 

neutron held together by attractive forces. Due to this simplicity, the deuteron gives us an 

ideal system for studying the nucleon-nucleon interaction.  

The binding energy for any nucleus is defined as the negative of the difference between 

the nuclear mass and the sum of the masses of the constituents  

    (       (   )  ) 
                                    (2.1) 

Where    is the nuclear mass, mp is the proton's mass, mn is the neutron's mass, Z is the 

number of protons and A is the mass number. For the deuteron, the binding energy is 

2.225 MeV which is relatively small compared with typical nuclei for which the average 

binding energy per nucleon is about 8 MeV. Because of the small binding energy,  the 

deuteron is a weakly bound system and it has no excited state [1, 4, 15]. The main ground 

state properties of the deuteron are listed in the table (2.1) below [3]. 
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The total angular momentum J of the deuteron is the sum of 3 terms which are the 

individual spin of the proton sp and of the neutron sn, each with spin 1/2 because they are 

fermions, and the orbital angular momentum L of the nucleons as a result of their motion 

about their center of mass. L can take the values 0, 1, 2, 3, ..., which are usually called S, 

P, D, F, .... states. So the total angular momentum J of the deuteron can be written as 

J=S + L 

Where S = sp + sn is the total spin [4]. The total angular momentum of the deuteron is 

J=1[1]. The proton and neutron spins can be either parallel for a total spin of 1(S=1) 

which is the triplet state, or antiparallel for a total spin of 0 (S=0) which is the singlet 

state. To get J=1 there are four combinations between S and L. 

a) S=1 with L=0, 

Ground state property Value 

Binding energy,    

Spin and parity,    

Isospin,   

Magnetic dipole moment,    

Electric quadrupole moment,    

Matter radius,    

          (  )     

   

  

           (  )     

       (  )       

     ( )    

Table 2.1: Ground state properties of the deuteron 
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b) S=0 with L=1, 

c) S=1 with L=1, 

d) S=1with L=2, 

But which one of these combinations is accepted? This can be determined after we know 

the parity of the deuteron. 

The parity determines the behavior of the wavefunction when       . By studying the 

reactions involving deuterons and the properties of the photon emitted during the 

formation of the deuterons, it was found that the parity of the deuteron is positive. But the 

wavefunction of the deuteron is the product of the intrinsic wavefunction of the proton, 

the intrinsic wavefunction of the neutron and the orbital wavefunction for the relative 

motion of the proton and the neutron. The parity of intrinsic wavefunctions of the proton 

and the neutron are the same because they are two different states of the nucleon so the 

product of their intrinsic wavefunction is positive. From [16] we know that the parity 

associated with orbital motion is determined by the factor (-1)
L
 because the angular 

dependence in the wavefunction of the deuteron is given by the spherical harmonic YLm 

and when the parity operation  is applied to YLm, YLm( -θ, φ+ ) = (-1)
L 

YLm(θ, φ)  it 

gives a phase (-1)
L
. So the positive parity will be for L=0 which is the S state and for L=2 

which is the D state. Now we can eliminate the combinations which include L=1. It is 

clear now that it is impossible for the deuteron to be in the singlet state where sp and sn 

antiparallel with a total spin 0 (S=0), but it exists in the triplet state (S=1) [4]. 
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The two possibilities of L indicate that both the triplet S state with L=0 and total spin 

S=1 (
3
S1) and the triplet D state with L=2 and total spin S=1 (

3
D1) components appear in 

the ground state wave function of the deuteron 

        
       

 . 

The triplet S state (    
 )  is spherically symmetric since it doesn't have angular 

momentum, but the existence of triplet D state (
3
D1) breaks this symmetry. The 

coefficients    and    can be determined by the electric quadrupole and the magnetic 

dipole moments beside the normalization condition 

  
    

    

The electric quadrupole moment measures the departure (the deviation) from a spherical 

charge distribution of a nucleus. For pure    
  state the electric quadrupole moment is 

zero, but for the deuteron, the electric quadrupole moment is a positive quantity (   

             ) which is an evidence for the presence of the    
  in the ground state for 

the deuteron.  

On the other hand, the magnetic dipole moment of the deuteron also indicates that the 

ground state of the deuteron is a mixture of    
 and    

 . This can be verified by 

calculating the magnetic dipole moment for the ground state by assuming that the 

deuteron has no orbital angular momentum (L=0, S state), and so the magnetic dipole 

moment is the sum of the magnetic dipole moments for the free proton and free neutron, 

where the magnetic dipole moment for the proton is                , while for the 

neutron is                  with                    , but the experimental 
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value of the deuteron magnetic dipole moment is                 [4]. The small 

difference between     and        indicates that the ground state of the deuteron is not 

a pure    
 state, the    

  state has a small but nonzero contribution to the deuteron's 

ground state. 

Using the experimental values for the electric quadrupole moment and the magnetic 

dipole moment of the deuteron beside the normalization condition it is found that the 

probability of the deuteron to be in the    
  state (  

2
) is about 96% and the probability to 

be in the    
  state (  

2
 ) is about 4%. This means that the    

  state is dominant in the 

ground state of the deuteron, while the    
  state has only a small contribution. Because 

of the presence of    
  state we conclude that the nucleon-nucleon interaction is not 

spherically symmetric and hence it is not a purely central potential. This combination 

between    
  state and    

  state has a very important role in the study of the properties of 

the nucleon-nucleon interaction. 

2.2 NUCLEON-NUCLEON INTERACTION 

As we mentioned at the beginning of this chapter, the deuteron gives us an ideal system 

to study the nucleon-nucleon interaction, which plays a vital role in understanding the 

nuclear force. In principle, the existence of stable nuclei implies that the net nucleon-

nucleon force must be attractive and much greater than the Coulomb force. Of course this 

attractive force is not electric because the neutrons have no charge [2]. So what is the 

nature of these forces? How do they depend on the distance between nucleons and on 

their spins? 
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Nucleons (protons and neutrons) are not elementary particles, they are the bound states of 

three fermions with spin 1/2 which are called quarks. 

The proton consists of two up quarks and one down quark (proton=uud), whereas the 

neutron consists of two down quarks and one up quark (neutron=udd) [17]. The 

difference between their masses is relatively small. It was found that the mass of the 

proton is 938.272 MeV/c
2
 while the mass of the neutron is 939.566 MeV/c

2
. They differ 

only by 0.1% [3]. 

The charge of the up quark is + 2/3 e, where e is the magnitude of the electric charge of 

the electron which is equal to 1.60217733(49)×10
-19

 C, and the charge of the down quark 

is -1/3 e. From this, it is easy to conclude that the charge of the proton is +1e while the 

neutron is neutral [3]. 

Both proton and neutron have spin 1/2 so they are fermions, particles that obey Fermi-

Dirac statistic. When nucleons interact with each other the Pauli exclusion principle must 

be applied and the total wavefunction should be antisymmetric [3]. 

The proton and the neutron can be considered as two states of the same particle. They are 

similar in most of their properties; both have spin 1/2 and their masses are very close to 

each other, they differ only by about 0.1%. The main difference between the proton and 

the neutron is in their electromagnetic properties. But if we are dealing with the strong 

interaction we cannot distinguish between them, they will be considered as 2 states of the 

same particle. 

To distinguish between them we need a new label, this label (operator) is the isospin. The 

value of the isospin for the nucleon is t=1/2. The proton and the neutron are two different 
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states of the nucleon, they differ by the third component of isospin operator t0. While the 

neutron has t0= +1/2 the proton has t0= -1/2. 

In addition to the protons and neutrons, there exist many particles that consist of quarks 

and antiquarks. The most important particles for nuclear physics are the three pions 

( +
, 0

, -
) [1]. The  +

is made up of an up quark and an anti-down quark (     ̅), 

while the   consists of a down quark and an anti-up quark (     ̅), and  0 
is 

composed of a mixture of up, anti-up, down, and anti-down quarks (   
  ̅   ̅̅

√ 
)[18-19]. 

The oldest attempt to explain the nature of the nuclear force was proposed by Yukawa in 

1934. He supposed that nucleons are attracted together due to exchange of quanta of 

nonzero mass, which were later identified as the pions ( +
, 0

, -
) [20]. 

If we are interested in the low-energy region where the nucleons hardly get excited 

internally, we can treat the nucleons as inert, structureless elementary particles, and we 

can understand many of the properties of the multi-nucleon systems by the nucleon-

nucleon interactions. 

The main features of the nuclear force can be summarized as follows: 

1. The nuclear force has a finite range. This property can be deduced by noticing 

that the binding energy per nucleon (8 MeV) [3] and the densities of heavy nuclei 

(                      ) [3-4] are nearly constant. If the range of the 

nuclear force were infinite then both quantities will increase by increasing the 

number of nucleons. 

 

2. The nucleus contains protons and neutrons. In spite of the existence of the 

repulsive force between protons the nucleus is stable. This stability is caused by 
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the existence of the nuclear force which is a short-range attractive force; the range 

of this force is about 1.4 fm which is in the order of nuclear radius. The reason 

that nuclear force has a short range comes from the exchange of pions between 

nucleons inside the nucleus which was proposed by Yukawa. By considering that 

when two nucleons interact they exchange the pion with mass           ⁄  

[21], then the energy violation ∆E of this particle is approximately    , where c 

is the speed of light.  

         From the uncertainty principle the pion can exist for a time interval 

   
 

  
 

 

                                                    (2.2) 

Where   is the reduced Planck constant. If one considers, at most, that the particle 

moves with the speed of light  , then, during the time interval    it can travel, at 

most, a distance     . If we take this distance to be the range of nuclear force then  

          the range of the nuclear force =     
  

            

but the nuclear force rapidly decreases to zero beyond this distance. At short 

distances (less than 0.6 fm) [22], the interaction between nucleons becomes 

repulsive due to the exchange of other mesons like   (
  ̅   ̅

√ 
) and   

(
  ̅   ̅   ̅

√ 
) where s is the strange quark [19, 22-23]. This repulsion protects the 

nuclei from collapsing and it is responsible for the size of the nuclei. 

 

3. The nucleon-nucleon interaction is strongly spin dependent. This property is 

mainly predicted from the fact that only the triplet state exists in the deuteron. As 
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a result, an additional term which depends on the spins of the two nucleons,    and 

   , must be added to the central potential. Experiments indicate that nuclear forces 

satisfy certain symmetries such as invariance under parity (      ) and time 

reversal (    ),so the spin term must also satisfy the parity and the time 

reversal invariances.  

4. The nucleon-nucleon force has a non-central or tensor component. This part of the 

force does not conserve orbital angular momentum, which is a constant of motion 

under central forces [4]. We mentioned above that there is a combination between 

   
  state and    

  state where    
  state is dominant while    

  state has a small 

contribution. This indicates that a small non-central force component must be 

added to the central dominant force between two nucleons. As the only reference 

direction for a nucleon is its spin, the tensor force term depends mainly on the 

separation position vector    and the spin of the nucleon   . Thus there are only two 

terms relating    and    with each other that can contribute, (     ) or  (     ). For 

two nucleons with spins    and    , the tensor potential depends on the terms 

(      )(      ) or (      ) (      ). But we can write the second term in terms of 

the first with an extra term   (       ) using the properties of dot and cross 

products. (      ) (      )      (   (      ))      (   (     )    (      )) 

   (       )  (      )(      )) . .  

As a result, the tensor character of the nucleon-nucleon interaction can be written 

as     
 (      )(      )

          . If we consider infinite nuclear matter with many 

    nucleons, the tensor term can be ignored because the average over all angles is 

    zero. 
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5. The nucleon-nucleon interaction is assumed to be charge independent [4, 20]. 

This means that the proton-proton, the neutron-neutron, and the proton-neutron 

interactions are identical although there is a very small difference (of order   ) 

between the potentials of the proton-neutron interaction from one side, and the 

proton-proton and neutron-neutron interactions from the other side [4]. 

 

Determining the correct potential between the nuclear particles is one of the important 

questions in nuclear physics. The proper potential helps us to calculate the main 

properties of the nucleus and compare the results with experimental data.  

 The forces between nucleons have a very short range which is about 1.4 fm, they are 

very strong within this range but rapidly decrease to zero beyond a certain distance so 

we need a rapidly decreasing function. 

In nuclear physics, the interaction potential between two nucleons may have different 

forms such as the square well, Yukawa potential, Gaussian potential, or more 

complicated forms. Actually, the results are independent of the shape assumed for the 

potential. The common characteristic of these potentials is that they depend only on 

the inter-nucleon distance [2]. 

In [10], Abdul-Rahman, Alstaty and Jaqaman used a square well potential which is 

easier to handle analytically. But in nature, the potential is not expected to be so 

sharply cut off. 

In our work we propose a more realistic form of the potential, Gaussian potential, as 

will be discussed later in chapter 5  
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CHAPTER 3 

THE WAVEFUNCTION OF THE DEUTERON-NUCLEON 

SYSTEM 

In the previous chapter we discussed the main properties of the deuteron and the main 

features of the nucleon - nucleon interaction. In this chapter we will use our knowledge 

about this interaction to construct the wavefunction of the deuteron-nucleon system, 

which consists of a deuteron and an external nucleon in a low density medium, which 

interact via Gaussian interaction. 

3.1 CONSTRUCTION OF THE DEUTERON-NUCLEON 

WAVEFUNCTION 

The deuteron is a two-body system which can easily be converted to a one-body system 

after separating the center of mass motion from the internal motion. In light of separation, 

the deuteron wave function,   (       ), can be written as: 

  (       )     (     

 
) (    )                                     (3.1) 

Where    (     

 
) is the center of mass wavefunction,  (    ) is the internal 

wavefunction,     and     are the positions of the proton and the neutron inside the 

deuteron.      is the relative distance between the two nucleons with respect to each other 

(            ). 
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Assuming that the deuteron has a CM momentum  K and is confined inside a box of 

volume   , where L is much larger than the size of the deuteron, then the spatial 

wavefunction of the deuteron is 

  (       )  
 

   ⁄    ⃗⃗  (
 ⃗⃗    ⃗⃗  

 
) (    )                                            (3.2) 

Now, for the deuteron-nucleon system, assuming without loss of generality, that the 

external nucleon is a neutron with position     and momentum  k and spatial 

wavefunction 

     (   )  
 

   ⁄    ⃗                                                              (3.3) 

Now, the spatial wavefunction of the deuteron-nucleon system will be  

 (           )   (    )
 

   
  ⃗⃗  (

 ⃗⃗    ⃗⃗  
 

)   ⃗                                             (3.4) 

The form of  (    ) depends on the type of potential used to describe the interaction 

between the nucleons inside the deuteron. In Abdul-Rahman, Alstaty and Jaqaman [10] 

they used the square well potential, but in this work we will use the Gaussian potential.  

The deuteron-nucleon system has two identical particles; the free neutron and the bound 

one inside the deuteron. The neutrons are fermions, hence the total wavefunction (spatial 

and spin parts) of the system should be antisymmetric under the exchange of the two 

neutrons, so we have to take the spin part to be symmetric if the spatial part is 

antisymmetric, and vice versa. As a result, the total wavefunction of the system is given 

by 
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    (           )  √
 

 
{  (           )∑    

 
    (   )    (           )   (   )}          (3.5) 

Where    (   ) and    (   ) are the 3 triplet and 1 singlet spin states for the two 

neutrons. We ignore the spin of the third non-identical particle (the proton) as the 

wavefunction symmetrization only applies to identical particles. 

 The bound nucleons inside the deuteron are found in the triplet spin state only as we 

mentioned in the previous chapter, but in equation (3.5) we also take the singlet spin state 

into consideration because we study the interaction between the nucleons inside the 

nucleus and the free nucleon, and they can interact through the triplet and singlet 

interactions with probability 
 

 
  and 

 

 
  respectively.  

In equation (3.5) 

    [ (           )   (            )]                                    (3.6) 

     [ (           )   (            )]                                    (3.7) 

which are respectively the antisymmetric and the symmetric forms of the spatial 

wavefunction   which is defined in equation (3.4). 

The normalization constants   and    are given by  

  
 

√ √  [
| | 

  ⁄ ]

  and     
 

√ √   [
| | 

  ⁄ ]

                                            (3.8) 

Where                                          ∫ ( ) 
 (

 ⃗⃗⃗ 

 
  ⃗ )      

                                               (3.9)  

It is found typically that | |    , so both   and  ́  
 

√ 
 [10].  
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3.2 ENERGY EXPECTATION VALUE FOR THE DEUTERON- 

NUCLEON SYSTEM 
 

The total wavefunction of the system is found in equation (3.5) to be 

    (           )  √
 

 
{  (           ) ∑    

 

    

(   )    (           )   (   )} 

Since the triplet and singlet spin wavefunctions are orthogonal then the expectation value 

of the energy for the system is  

⟨    | |    ⟩  
 

 
⟨  | |  ⟩  

 

 
⟨  | |  ⟩                       (3.10) 

Where   is the Hamiltonian of the system. 

By using the equation (3.6), the first term in the equation (3.10) above will be simplified 

as follows 

⟨  | |  ⟩     [  (     )| (     )| (     )     (     )| (     )| (     )   

                          (     )| (     )| (     )     (     )| (     )| (     )  ]       (3.11) 

The Hamiltonian of the system should be symmetric in the two neutrons 2 and 3,so 

 (     )   (     )   .  

Moreover, we integrate over             so we can exchange the labels of 2 and 3 in the 

last two terms. Then we can see that the first and the last terms are the same and the 

second and the third terms are the same, so that 

 



 
 

23 
 

⟨  | |  ⟩      [  (     )| (     )| (     )   

                         (     )| (     )| (     )  ]                                               (3.12) 

⟨  | |  ⟩ is the same as ⟨  | |  ⟩ but with a positive sign instead of the negative sign 

between the two terms in equation (3.12). 

The Hamiltonian  (     ) can be written as  

 (     )      
  

  
    

  
  

  
   
   (   )   (   )        (3.13) 

Where     is the internal Hamiltonian of the deuteron with the reduced mass   

     
  

  
    
   (   )                                           (3.14)  

the second term in equation (3.13) is the kinetic energy of the CM motion of the deuteron 

with total mass M=2m, the third term is the kinetic energy of the external neutron with 

mass m, and   is the nucleon-nucleon interaction. Now, equation (3.12) will be 

 ⟨  | |  ⟩  ⟨  |   |  ⟩  ⟨  | 
  

  
    

 |  ⟩ 

                     ⟨  | 
  

  
   

 |  ⟩  ⟨  | (   )   (   )|  ⟩                                   (3.15) 

The first term⟨  |   |  ⟩      is the binding energy of an isolated deuteron, the 

second term ⟨  | 
  

  
    

 |  ⟩  
    

  
 is the kinetic energy of the cluster (deuteron), 
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The third term ⟨  | 
  

  
   
 |  ⟩  

    

  
 is the kinetic energy of the free nucleon. To find 

the fourth term we will use equation (3.6)  

⟨  | (   )   (   )|  ⟩     ⟨ (     )| (   )   (   )| (     )⟩ 

                                                  ⟨ (     )| (   )   (   )| (     )⟩                  (3.16) 

The first term in the equation (3.16):  

   ⟨ (     )| (   )   (   )| (     )⟩ 

 
   

  
∭  (   ) 

   ⃗⃗  (
 ⃗⃗    ⃗⃗  

 
)
    ⃗     [ (   )   (   )]  (   ) 

  ⃗⃗  (
 ⃗⃗    ⃗⃗  

 
)
   ⃗          

    
    

 
   

  
∭| (   )|

 [ (   )   (   )]  
    

    
    

 
   

  ∭| (   )|
  (   )  

    
    

    
   

  ∭| (   )|
  (   )  

    
    

     (3.16.a) 

Now the second term in (3.16): 

   ⟨ (     )| (   )   (   )| (     )⟩ 

  
   

  
∭  (   ) 

   ⃗⃗  (
 ⃗⃗    ⃗⃗  

 
)
    ⃗     [ (   )   (   )] (   ) 

  ⃗⃗  (
 ⃗⃗    ⃗⃗  

 
)
   ⃗          

    
    

 
   

  
∭  (   ) 

   ⃗⃗  (
 ⃗⃗    ⃗⃗  

 
)   ⃗  (       )[ (   )   (   )] (   )  

    
    

    

 
   

  
∭  (   ) 

   ⃗⃗  (
 ⃗⃗    ⃗⃗  

 
)   ⃗  (       ) (   ) (   )  

    
    

    

 
   

  ∭  (   ) 
   ⃗⃗  (

 ⃗⃗    ⃗⃗  
 

)   ⃗  (       ) (   ) (   )  
    

    
                           (3.16.b) 
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 ⟨  | |  ⟩      
    

  
 

    

  
 

                
   

  ∭| (   )|
  (   )  

    
    

     
   

  ∭| (   )|
  (   )  

    
    

    

               
   

  ∭  (   ) 
   ⃗⃗  (

 ⃗⃗    ⃗⃗  
 

)   ⃗  (       ) (   ) (   )  
    

    
    

              
   

  ∭  (   ) 
   ⃗⃗  (

 ⃗⃗    ⃗⃗  
 

)   ⃗  (       ) (   ) (   )      
    

                        (3.17) 

As we mentioned above,    is the binding energy of the free deuteron, the second and the 

third terms are the kinetic energies of the deuteron and the external neutron. The fourth 

and fifth terms represent the self energy, while the sixth and seventh terms represent the 

Pauli blocking. The kinetic energy terms do not contribute to the binding energy. The self 

energy is the interaction between the nucleons inside the deuteron and the free nucleon 

and it is almost the same whether the nucleons are bound to form the deuteron or 

unbound. So when we calculate the difference between the expectation value of the 

Hamiltonian when the constituents of the deuteron are bound and when they are unbound  

⟨    | |    ⟩  ⟨       | |       ⟩ 

the value of self energy is negligibly small and we can ignore it. We are left with the 

Pauli blocking terms which are the sixth and the seventh terms, but the seventh term in 

equation (3.17) is very small and we can neglect it[10], so the most important term is the 

sixth term which contains  (   ). 

The nucleons inside the deuteron always interact with each other via the triplet 

interaction but at the same time they interact with the free nucleon via the triplet 
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interaction with probability of 3/4 and singlet interaction with probability of 1/4. So 

 (   )  
 

 
   

 

 
   where the subscripts t and s refer to the triplet and singlet 

interactions respectively. 

So the 6
th 

term in equation (3.17) will be 

  
   

  ∭  (   ) 
   ⃗⃗  (

 ⃗⃗    ⃗⃗  
 

)   ⃗  (       ) [
 

 
   

 

 
  ]  (   )  

    
    

       

   
   

  ∭  (   ) 
  (

 ⃗⃗⃗ 

 
  ⃗ ) (       ) [

 

 
   

 

 
  ]  (   )  

    
    

    

To solve the integral we will make the following transformation: 

                                      

The Jacobian for the transformation above is 
|

|

    

    

    

     

    

     

    

    

    

     

    

     

    

    

    

     

    

     

|

|
 which is equal to one. 

We will illustrate this by evaluating the Jacobian in one dimension for   : 

       ,          ,           

So we can write              in terms of                 
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|

|

   

    

   

    

   

    

   

    

   

    

   

    

    

    

    

    

    

    

|

|

 |
   
   
   

|    

Since the Jacobian for the above transformation equals one we can replace       
    

    

by      
     

    . 

And we can write         using the new variables     and      : 

                                  

So the sixth term in the equation (3.17)  

  
   

  ∭  (   ) 
  (

 ⃗⃗⃗ 

 
  ⃗ ) (         ) [

 

 
  (   )  

 

 
  (   )]  (   )  

    
     

     

can be written as: 

  
   

  ∫    ∫  (   ) 
  (

 ⃗⃗⃗ 

 
  ⃗ )          ∫ (   ) [

 

 
   

 

 
  ]  

 (
 ⃗⃗⃗ 

 
  ⃗ )           

=  
   

       [
 

 
    

 

 
   ] 

Where ∫         which is the volume of the box where the system is confined. And 

from equation (3.9) 

  ∫ (   ) 
 (

 ⃗⃗⃗ 

 
  ⃗ )           

so the complex conjugate     ∫  (   ) 
  (

 ⃗⃗⃗ 

 
  ⃗ )           
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     ∫ (   )  (   ) 
 (

 ⃗⃗⃗ 

 
  ⃗ )                                          (3.18) 

     ∫ (   )  (   ) 
 (

 ⃗⃗⃗ 

 
  ⃗ )                                          (3.19) 

Therefore 

⟨  | |  ⟩      
   

     [
 

 
    

 

 
   ]                            (3.20a) 

⟨  | |  ⟩      
    

     [
 

 
    

 

 
   ]                           (3.20b) 

⟨    | |    ⟩  
 

 
⟨  | |  ⟩  

 

 
⟨  | |  ⟩ 

     
 

 

   

     [
 

 
    

 

 
   ]  

 

 

    

     [
 

 
    

 

 
   ]                      (3.21) 

Noting that  and  ́    
 

√ 
. Equation.(3.21) reduces to: 

⟨    | |    ⟩      
 

 

 

   
      

 

 

 

    
                            (3.22) 

 

3.3 BINDING ENERGY FORMULA FOR A DEUTERON 

IMMERSED IN A VAPOR OF NUCLEONS. 
 

 All the above calculations were done for one external neutron, to include the 

contribution of other nucleons in the vapor we assume that there are   nucleons in the 

volume   , so we can use the number density   
 

   to include all nucleons in the vapor, 

so the energy in equation (3.22) can be written as: 
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  ⟨    | |    ⟩      
 

 
         

 

 
                                  (3.23) 

and hence the binding energy formula for a deuteron immersed in a nucleon vapor by 

considering the Pauli blocking shift becomes:  

 ( )   ⟨    | |    ⟩     
 

 
         

 

 
                           (3.24) 

The integrals                depend on the wavevectors  ⃗⃗ and  ⃗  for the deuteron and the 

free nucleon, and these quantities depend on the system temperature. Therefore, we will 

find the statistical average over all momentum space, we will use the Nuclear Statistical 

Equilibrium (NSE) and the chemical potentials for ideal Bose and Fermi gases [24]. All 

of these calculations will be done in the next chapter. 
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CHAPTER 4 

THE CENTER OF MASS MOMENTA OF DEUTERONS 

AND NUCLEONS 
 

In the previous chapter we derived the formula for binding energy for a deuteron 

immersed in a vapor of nucleons by taking into consideration the Pauli blocking effect. 

 ( )     
 

 
         

 

 
                                                  (4.1) 

The integrals               were defined in equations (3.9), (3.18), and (3.19). All of these 

equations depend on the quantity 
 ⃗⃗ 

 
    ⃗  , where  ⃗⃗ and  ⃗  are the wavevectors for the 

deuteron and the free nucleon respectively.  

In this chapter we will evaluate the integrals               

  ∫ ( )   ⃗                                                          (4.2) 

    ∫ ( )  ( ) 
   ⃗⃗  ⃗                                                (4.3) 

     ∫ ( )  ( ) 
  ⃗   ⃗⃗                                               (4.4) 

Where  ⃗  
 ⃗⃗ 

 
    ⃗  depends on the system's temperature. Therefore, to evaluate the 

integrals we will find the statistical average for the exponential functions that include Q; 

〈   ⃗    〉. In our system we have a nucleon (which is a fermion) with momentum   ⃗  and a 
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deuteron (which is a boson) with momentum   ⃗⃗ . So we will use the statistical mechanics 

of Fermi and Bose gases. 

To find the average values of physical quantities for a system composed of fermions, we 

should use the Fermi-Dirac distribution function [25]. Suppose that we have a system 

composed of   fermions with single particle energies labeled as          , the Fermi-

Dirac distribution function is given by 

      
 

  (    )  
                                                     (4.5) 

Where   is the chemical potential, and   
 

   
.    is Boltzmann constant and   is the 

temperature. From equation (4.5) we can notice that the Fermi-Dirac distribution function 

cannot be more than 1 or less than 0. At low temperatures (very close to absolute zero T 

= 0) the behavior of the function depends on the value of (    ). If (    )    and 

|    |     , the Fermi Dirac distribution function tends to its maximum 1. But if 

(    )   and |    |     , the function tends to its minimum 0 [25]. 

At these low temperatures (T ≈ 0), fermions are not like bosons they cannot share the 

same state because of the Pauli exclusion principle. But they can occupy the lowest 

distinct energy states up to the Fermi energy    which is the energy of the highest 

possible occupied state [23]. 

In this case, the Fermi-Dirac distribution function is defined as 

     {
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To find the average values of physical quantities for systems composed of bosons, we 

have to use the Bose-Einstein distribution function [25]. For a system composed of   

bosons with single particle energies labeled as   ́   ́    ́́ and chemical potential  ́, the 

Bose-Einstein distribution function is given by 

     
 

  ( ́   ́)  
                                                     (4.6) 

At low temperatures (very close to absolute zero T = 0), a large fraction of bosons 

accumulate in the ground state which leads to the phenomenon of Bose-Einstein 

condensation. Such phenomenon cannot happen in a Fermi gas because of the Pauli 

exclusion principle. 

As we see in the equations (4.5) and (4.6) for fermions and bosons, they look the same, 

but they only differ in the negative sign in the denominator. So the derivation of 〈    ⃗    〉 

is similar to derivation of〈   ⃗⃗     ⁄ 〉. Now we can start deriving 〈    ⃗    〉 using the Fermi-

Dirac distribution function. 

4.1 EVALUATION OF 〈   ⃗⃗     ⁄ 〉AND〈    ⃗    〉AT HIGH 

TEMPERATURES 
 

As we mentioned above we can derive 〈    ⃗    〉 using the Fermi-Dirac distribution 

function. In this model, the gas consists of non-interacting indistinguishable fermions. At 

absolute zero (T=0), the Fermi-Dirac distribution function has a special behavior; it is 

unity for all states with     and zero for all states with    . We will discuss this case 

in section 4.3. 
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At any higher temperature, some particles will occupy higher energy states above the 

fermi energy. In our work we consider an ideal Fermi system of   non-interacting 

particles in a cubical box of volume    with a wavefunction of the form 

  (  )  
 

     
  ⃗                                                       (4.7) 

The  ⃗  is the wave vector of the particle and    is the position vector. The wave vector 

components can be written as: 

   
  

 
                 

  

 
                 

  

 
                             (4.8) 

Where   ,    and    are           . 

 The number of allowed plane wave states in a volume element     is 

    (
 

  
)
 

                                                        (4.9) 

Where the number 4 is the spin-isospin degeneracy factor for nucleons. It is a weight 

factor that arises from the internal structure of particles such as spin. For nucleons, 

 2 x 2 = 4 the factors of 2 come from the two spin states and the two isospin states of the 

nucleons, which are the proton and the neutron. Therefore, the total number of nucleons 

( ) is given by 

       (
 

  
)
 

∫                                                 (4.10) 

and the average value  〈    ⃗    〉  
 

 
(

 

  
)
 

∫     ⃗                                                  (4.11) 
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To find 〈    ⃗    〉 at high temperatures we will use the method adopted by Jaqaman et 

al[6]to expand the Fermi-Dirac distribution function. Using the same method we can find 

the chemical potential   at high temperatures. 

At high temperatures [(    )     ], the Fermi system is said to be partially 

degenerate and hence the occupation probability for the state    is much smaller than 

unity [
(    )

   
  ]. 

The expansion below is suitable for such cases. 

 

   
 ∑ (  )    

     where| |                                       (4.12) 

We can find  

    
 

  (    )   
 

   (    )

     (    )
 

          (    )[     (    )      (    )   ] 

         (    )      (    )      (    )    (  )       (    )    

      ( )   (
 

 
)   (

 

 
)   (

 

 
)    (  )     (

 

 
)                                 (4.13) 

Where                                                (
 

 
)      (    )                                             (4.14) 

The temperature   is implicitly included in   
 

   
 

Substituting equation (4.13) in equation (4.11), we get 

 



 
 

35 
 

 〈    ⃗    〉   
 

 
(

 

  
)
 

[∫     ⃗     ( )    ∫     ⃗     (
 

 
)       

            (  )   ∫     ⃗     (
 

 
)     ]                                            (4.15) 

            
 

 
(

 

  
)
 
[        (  )       ] 

Where    is given by 

   ∫    ⃗     (
 

 
)    

       ⁄ ∫     ⃗                ⁄                       (4.16) 

Now, we will evaluate the integrals between the brackets in equation (4.15) by finding a 

general formula for the     integral    instead of evaluating them one by one.  

We assumed there is no interaction between the nucleons so the single particle energy 

   
    

  
 is purely kinetic. To find the integral in equation (4.16), we will use completing 

the square technique 

      

      
   ⃗     

    

     
[ ⃗  

       

   ]
 

 
      

                       (4.17) 

After collecting the exponents, we can substitute equation(4.17) in equation (4.16) to get 

          ⁄             ⁄ ∫  
 

    

     
[ ⃗  

      ⃗⃗ 

   
]
 

                       (4.18) 

To simplify the integral in equation (4.18), let us set 
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 ⃗   ⃗  
       

    

{
 
 

 
       

      

   

      
      

   

      
      

   

                                         (4.19) 

hence                                     

       

       

       

}                                                  (4.20) 

Using equation (4.19) and (4.20), the equation (4.18) becomes 

         ⁄             ⁄ ∫ 
 

      

         

                   ⁄             ⁄ (  ) ∫    
 

      

       
 

 
 

We can solve the integral using the following formula: 

∫        
  

 

 
 

√ 

    ⁄                                                  (4.21) 

Where   is a constant 

So equation (4.18) will be 

          ⁄             ⁄ (  )
√ 

 (
   

     
)
  ⁄                          (4.22) 

Now, let us evaluate   by substituting equation  (4.13) in equation (4.10) 

    (
 

  
)
 
[∫  ( )     ∫ (

 

 
)     ∫ (

 

 
)       

                  (  )   ∫ (
 

 
)      ]                                                                  (4.23) 
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            (
 

  
)
 

[  ́    ́    (  )     ́   ] 

 (
 

 
) is defined in equation (4.14). 

The general formula for the n
th 

integral   
  is 

  
  ∫ (

 

 
)    ∫   (    )   ⁄      

       ⁄ (  )∫               ⁄
 

 

   

       ⁄ (  )
√ 

 (
   

     
)
  ⁄                                                       (4.24) 

Where we used the formula of equation (4.21) again. As a result, using equations (4.10), 

(4.11), (4.15), (4.23) and (4.24), 〈    ⃗    〉 is given by 

                                 〈    ⃗    〉  
 (

 

  
)
 
[                      ]

 (
 

  
)
 
[  

    
    

    
    

    
    

   ]
 

 〈    ⃗    〉  
[                      ]

[  
    

    
    

    
    

    
   ]

                                           (4.25) 

It is sufficient to take the first seven terms (   ) in the above equation as it will be 

shown later in chapter 5. 

 Now, we can use the same method to derive 〈  
 ⃗⃗⃗ 

 
   〉 which is defined as 

〈  
 ⃗⃗⃗ 

 
   〉  

 

  
(

 

  
)
 

∫   
 ⃗⃗⃗ 

 
                                              (4.26) 
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Where    is the total number of bosons (deuterons) in the boson gas and is given by 

     (
 

  
)
 

∫                                               (4.27) 

Where the number   here is the spin degeneracy factor for the deuteron. Using the 

expansion of equation (4.12), we can make the high temperature expansion for the Bose-

Einstein distribution function with the chemical potential   and single particle energy 

  ́  
    

 (  )
 

    

  
 

     
 

  ( ́    )  
 

   ( ́    )

     ( ́    )
    ( ́    )[     ( ́    )   ] 

                                 ( ́    )      ( ́    )      ( ́    )    

  ́( )   ́ (
 

 
)   ́ (

 

 
)     ́ (

 

 
)                                         (4.28) 

Where  ́ (
 

 
)      ( ́    ) 

In a similar way to the derivation of 〈    ⃗    〉, substituting the expansion of equation 

(4.28) in equation (4.26) 

〈  
 ⃗⃗⃗ 

 
   〉  

 

  
(
 

  
)
 

∫  
 ⃗⃗⃗ 

 
   [ ́( )   ́ (

 

 
)   ́ (

 

 
)   ]    

   
 

  (
 

  
)
 

[∫   
 ⃗⃗⃗ 

 
    ́( )     ∫   

 ⃗⃗⃗ 

 
    ́ (

 

 
)     ∫  

 ⃗⃗⃗ 

 
    ́ (

 

 
)      ] 

  
 

  (
 

  
)
 
[                ] 



 
 

39 
 

where     ∫   
 ⃗⃗⃗ 

 
    ́ (

 

 
)     

               ∫  
 ⃗⃗⃗ 

 
   [    ( ́    )]     ∫  

 ⃗⃗⃗ 

 
   [      ⁄ ( ́    )]     

By substituting the single particle energy   ́  
    

  
 and using completing the square 

technique, the integral    will be  

                                         ⁄             ⁄ (  ) ∫    
 

      

       
 

 
 

        ⁄             ⁄ (  )
√ 

 (
   

     
)
  ⁄                                (4.29) 

Now let us evaluate    by substituting equation (4.28) in equation (4.27) 

               (
 

  
)
 

∫            (
 

  
)
 

∫  ́( )   ́ (
 

 
)   ́ (

 

 
)       

                   (
 

  
)
 

[∫[ ́( )]     ∫ [ ́ (
 

 
)]     ∫ [ ́ (

 

 
)]      ] 

                 
 

  (
 

  
)
 
[  

    
    

      
    ] 

where 

  
   ∫ [ ́ (

 

 
)]       ∫[    ( ́    )]       

Now we will evaluate the general formula for the    integral   
 . 

By substituting the single particle energy   ́  
    

  
 and using completing the square 

technique, the integral   
  will be 
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         ⁄ (  )∫    

 
      

     

 

 

   

            ⁄ (  )
√ 

 (
   

     
)
  ⁄                                            (4.30) 

As a result, using equations (4.26), (4.27), (4.29) and (4.30), 〈   ⃗⃗     ⁄ 〉 is given by 

                                  〈   ⃗⃗     ⁄ 〉  
 (

 

  
)
 
[                      ]

 (
 

  
)
 
[  

    
    

    
    

    
    

   ]
 

 
[                      ]

[  
    

    
    

    
    

    
   ]

                                         (4.31) 

Also, it is sufficient to take the first seven terms only (   ) as we will show in chapter 

5. 

By substituting equations (4.22) and (4.24) in equation (4.25) and taking the first seven 

terms, we get the final form of 〈    ⃗    〉 

〈    ⃗    〉  

 

   ⁄      ⁄ [           ⁄   
 

   ⁄
     ⁄             ⁄  

 

   ⁄
      ⁄            ⁄   

 

   ⁄
      ⁄            ⁄   ]

(
  

     
)

  ⁄

 
 
      ⁄ [   
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     ⁄  

 

   ⁄
      ⁄            ⁄   

 

   ⁄
      ⁄            ⁄   ]

(
  

     
)

  ⁄

  

 

[           ⁄   
 

   ⁄
     ⁄             ⁄  
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      ⁄            ⁄   

 

   ⁄
      ⁄            ⁄   ]

[           ⁄   
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     ⁄             ⁄  
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      ⁄            ⁄   
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      ⁄            ⁄   ]
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[           ⁄   
 

   ⁄
     ⁄             ⁄  

 

   ⁄
      ⁄            ⁄   

 

   ⁄
      ⁄            ⁄   ]

[   
 

   ⁄
     ⁄  

 

   ⁄
      ⁄   

 

   ⁄
      ⁄   ]

  

By taking the first seven terms, we get 

〈    ⃗    〉  
∑ [

(  )   

      (   )    ⁄             ⁄ ] 
   

∑ [
(  )   

      (   )    ⁄ ] 
   

                       (4.32) 

Following the same steps, by substituting equations (4.29) and (4.30) in (4.31) we get  

〈   ⃗⃗     ⁄ 〉  
∑ [

 

     
  (   )    ⁄             ⁄ ] 

   

∑ [
 

     
  (   )    ⁄ ] 

   

                           (4.33) 

Now, we can calculate the integrals in equations (4.2), (4.3) and (4.4) using the equations 

(4.32) and (4.33) for 〈    ⃗    〉 and 〈   ⃗⃗     ⁄ 〉. But first we will evaluate the chemical 

potentials   and    . 

 

4.2 Chemical Potentials for the Deuterons and 

Nucleons. 

 
In our work we assume thermal and chemical equilibrium and we ignore the interaction 

between nucleons except for the formation of clusters. Moreover, we viewed the nuclear 

matter at low density. The Nuclear Statistical Equilibrium (NSE) model suits these 

conditions [26-28] to relate the chemical potential of the nucleons to the chemical 

potential of the deuteron. 
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Due to statistical equilibrium there is chemical equilibrium between the clusters and the 

nucleons in the vapor [24] such that  

                                                             (4.34) 

Where   ,    and    are the chemical potentials for the clusters, protons, and neutrons 

respectively.   and   are the numbers of protons and neutrons in the cluster. 

Because of the assumed symmetry of nuclear matter, the chemical potentials of the 

protons and neutrons are equal           , so that: 

                                                                           (4.35) 

Where A=N+Z. 

For the deuteron A = 2, so 

                                                                       (4.36) 

Now, the number density for the deuteron    is given by 

   
  

  
 

 

(  ) 
∫  ́  

                                                 (4.37) 

where    is the total number of deuterons in the system,          is the spin 

degeneracy factor of the deuteron, and  ́  is the probability of finding the deuteron cluster 

with kinetic energy  ́  
    

  
 [24] 

 ́  
 

  ( ́     ( ))  
                                              (4.38) 
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 ( ) is the density dependent binding energy of the deuteron when embedded in the 

nucleon vapor. 

So all equations with derivations depend on    should be modified to include  ( )  

In all equations include    we can replace    by     ( ), and this is clear if we 

compare equation (4.6) with equation (4.38). But    for the deuteron equals    

       ( )                                               (4.39) 

In the equation of binding energy  ( ), we found that it is a function of the total density 

 . But we can also notice that the values of 〈   ⃗⃗     ⁄ 〉 and 〈    ⃗    〉 depend on the binding 

energy. Therefore, in order to achieve self-consistency many iterative operations should 

be performed when calculating the binding energy, and the value of the total number 

density of the system that achieves self-consistency is then used to get the binding energy 

of the deuteron immersed in nuclear matter. The iteration stops when the difference 

between two successive values of  ( ) is less than       MeV.  

Finally, we will find the formula for the chemical potential   of the free nucleons. The 

chemical potential of free nucleons is calculated using the equation of state for an infinite 

system of non-interacting nucleons at low density [24]: 

 (   )     (  (
  
  

 
)  ∑   

 
   (

  
  

 
)
 

)                         (4.40) 
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where    (
    

    
)
 

 ⁄

 is the thermal wavelength of the nucleon in the gas, and it is 

defined as the mean de Broglie wavelength of the nucleons in an ideal gas evaluated at 

temperature  . 

The      are the expansion coefficients that were obtained by using the method of series 

inversion. These coefficients were evaluated in [24]. In our work we will stop at    . 

From the table (4.1) below we can notice that the values of   rapidly decrease as the 

index   increases and they are alternative.  

In [24] it was shown that at low temperatures (T< 4 MeV) the contribution after the sixth 

term is negligible at low densities, for example at T = 3 MeV the equation (4.40) is 

convergent at  densities up to 0.12             , while for higher temperatures such as 

T = 6 MeV it is convergent at higher densities up to 0.2               . 

     

                    

                     

                     

                    

                  

                 

 

 

Table 4.1: Numerical values of the coefficients    

calculated for the ideal Fermi gas 
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4.3 EVALUATION OF 〈   ⃗⃗⃗   ⃗  ⁄ 〉 AND 〈    ⃗⃗   ⃗ 〉AT ABSOLUTE ZERO 

TEMPERATURE 

According to Bose-Einstein condensation phenomenon, at absolute zero temperature 

bosons tend to accumulate in the lowest possible energy state, and they have zero 

momentum    ⃗⃗    [6, 29]. Therefore 

〈   ⃗⃗     ⁄ 〉                                                      (4.41) 

 At absolute zero temperature, fermions can occupy the lowest distinct energy states up to 

the Fermi energy    which is defined previously at the beginning of this chapter. 

In this case, the Fermi-Dirac distribution function is defined as 

    {
                     
                     

                                             (4.42) 

Substituting equations (4.42) in equation (4.10 ) and  (4.11), we get  

   (
 

  
)
 

∫    
  

 
                                                (4.43) 

〈    ⃗    〉  
 

 
(

 

  
)
 

∫     ⃗      

 
                                          (4.44)  

Where   is the total number of nucleons, and    is the Fermi wave vector  

corresponding to the Fermi energy   . To evaluate this integral and without any loss of 

generality, we will assume that the vector    in equation (4.44) is directed along the z-axis, 

and so we have     ⃗              . In spherical coordinates, the volume element in 
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equations (4.43) and (4.44) is                  in  -space. Using spherical 

coordinates we can evaluate the integral analytically, and the result will be 

〈    ⃗    〉  
    (   )

  
   

 
    (   )

  
   

                                      (4.45) 

It is left to find   . To do so, let us recall that the total number of nucleons   is given by 

   (
 

  
)
 

∫    
  

 
  (

 

  
)
  

 
   

                              (4.46) 

But the number density of nucleons inside the cubic volume    is given by 

  
 

                                                           (4.47) 

Substituting equation (4.46) in equation (4.47) and solving for    

   (
    

 
)
  ⁄

                                                (4.48) 

 Substituting the result of equation (4.48) in equation (4.45) we get 

〈    ⃗    〉  
    ((

    

 
)
  ⁄

 )

(
    

 
)
  ⁄

  

 
    ((

    

 
)
  ⁄

 )

(
    

 
)   

                   (4.49) 

Using equation (4.41) we get  

〈   ⃗    〉  〈   ⃗⃗     ⁄ 〉 〈    ⃗    〉  
    ((

    

 
)
  ⁄

 )

(
    

 
)
  ⁄

  

 
    ((

    

 
)
  ⁄

 )

(
    

 
)   

                 (4.50) 
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CHAPTER 5 

USING GAUSSIAN POTENTIAL AND THE ISOLATED 

DEUTERON WAVEFUNCTION. 

The binding energy in equation (4.1) is evaluated in general for any form of potential. 

In our recent work we use a Gaussian potential which is physically more reasonable. 

We can write the Gaussian potential as follows 

 ( )      
     ⁄                                                   (5.1) 

Where    and   are the depth and the range of the potential respectively. The values 

of    and   can be determined using the variational principle and they can be adjusted 

to give the experimental value for the binding energy of the deuteron as we will do 

later in this chapter. 

The trial wavefunction for the relative motion between the proton and the neutron 

inside the nucleus should be suitable to the form of the potential. So a Gaussian 

wavefunction is used as follows 

 ( )        
                                                (5.2) 

Where   is Gaussian parameter and    is the normalization constant    (
  

 
)
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5.1 FINDING THE VALUES OF THE PARAMETERS    ,    ,   ,     ,   

In this chapter we will use the isolated deuteron wavefunction so the parameter   is 

constant and does not vary with changing the vapor density.  

For the ground state of the deuteron, the Hamiltonian can be expressed with the triplet 

interaction in the following equation 

          (  ) 

    
        

     
 ⁄                         (5.3) 

Where   is the reduced mass. 

The value of    is allowed to vary in the range             [30], and we choose    

to be 2.05 fm as in [31].     and   can be adjusted to give us the correct binding energy 

of the deuteron and to ensure that it is a minimum. The energy for the isolated deuteron 

(which is the negative of the binding energy) is 

    |   |    
 (  )  

       (
  

      
 ⁄
)
 

 ⁄

                          (5.4)  

Where    is the trial wavefunction defined in equation (5.2) 

Using the variational principle we derive the energy in equation (5.4) with respect to   

and by solving the equations 
  

  
   and  ( ) = -2.2 MeV, we find that the values of     

and     which minimize this energy are                and             . The 

energy  ( ) as a function of   is displayed in the figure (5.1).  
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If we compare our results with the results in other references we find, for example, that in 

[32] the values of the depth and the range are                       and the 

corresponding   equals           which is close to ours, and the calculated binding 

energy in [32] is 2.133 MeV. 

As we mentioned earlier in chapter 3, for the deuteron immersed in a vapor of nucleons, 

nucleons inside the deuteron interact with each other via the triplet interaction only, 

whereas at the same time they interact with the free nucleons via the triplet and singlet 

interactions and we should take this into account when we write the potential. So, in 

addition to the triplet potential we have the singlet potential with depth     and range    

  ( )       
     

 ⁄                                              (5.5) 

The singlet state is not bound, it has a negative binding energy which is about 0.06 MeV 

[33], it exists only for a very short time in collisions. For the singlet state the range is 2.4 

Figure 5.1: The energy of the isolated deuteron as a function of   . 

The value of   doesn't depend on the density   
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fm [31] and we can adjust the depth of the well until we have only one eigenstate with 

energy 0.06 MeV. We found that the required depth for the singlet interaction is 28.3 

MeV. For the square well potential used in [10], the depth for the triplet interaction is 

       and the range is 2.05 fm. While for the singlet interaction for the same potential, 

the depth is       and its range equals 2.4 fm.  

Now, we have found all parameters we need to find the Mott density for the deuteron 

using Gaussian potential with a range )  ( of         and depth )   (           for 

triplet interaction, and a range )  ( of     fm and depth )   (       MeV  for the singlet 

interaction. 

And the value for the parameter   used in the isolated deuteron wavefunction is 

          . 

In this case where the wavefunction is not allowed to vary with the vapor  density we will 

use the same value of   (          ) at all densities. And we will use the formula for 

the energy in equation (3.23) 

⟨    | |    ⟩      
 

 
         

 

 
           ( ) 

Where    in this case is constant and its value equals         which is the binding 

energy for the isolated deuteron in the ground state, and   is the total vapor density. 

          are the integrals defined in equations (3.9), (3.18), and (3.19). These integrals 

depend on the average quantities  〈    ⃗    〉 and 〈   ⃗⃗     ⁄ 〉 where these quantities depend on 

the density of the free nucleons (     ). So for a certain density   we  make an iteration 
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over the values of       which are less than or equal to the total density   (       ), 

and the iteration will stop at a certain value of        

At this value of       the density of free (unbound) nucleons       plus the density of 

bound nucleons   , which join together to give the deuteron, should be very close to the 

value of the total density   we start with (with a relative error (r) less than 0.01). In other 

words, the iteration over       stops when the value    
      

 
 is not larger than 0.01, 

where                 . The factor of 2 in the equation reflects the fact that the 

deuteron contains 2 nucleons. 

   is defined in equation (4.37) 

   
  

  
 

 

(  ) 
∫  ́  

   

where  ́  
 

  ( ́     ( ))  
 , and        

 

At this value of       which achieves self consistency for     , we use equation (3.24) 

 ( )   ⟨    | |    ⟩     
 

 
         

 

 
         

to calculate the deuteron binding energy. To achieve the self consistency for binding 

energy another iterative operation is performed. The iteration of the binding energy 

should stop when the difference between two successive values for binding energy does 

not exceed 0.001 MeV as we discussed in section 4.2. 
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5.2 BINDING ENERGY RESULTS USING ISOLATED DEUTERON 

WAVEFUNCTION 

In this section, we will use the values of    ,    ,      , and   obtained in section 5.1 

above to investigate the binding energy when the deuteron wavefunction is not allowed to 

vary with the vapor density. 

We will plot the binding energy of the deuteron in equation (3.24) versus the density   

  ( )     
 

 
         

 

 
         

Where               are defined in equations (3.9), (3.18), and (3.19) respectively. 

But at first we will show why we take the first 7 terms in equations (4.31) and (4.33). In 

the figure (5.2) below we plot the binding energy of the deuteron as a function of the 

vapor density ( ) at           using different number of terms. 

 

 

 

 

 

 

Figure 5.2: Deuteron binding energy as a function of   for different number 

of terms in the high temperature expansion in equations (4.31) and (4.33). 
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It is clear that when we take the first six terms (the black line)  and the first seven terms 

(the red line)  in the expansion we almost get the same curves, which indicates that it is 

enough to take the first seven terms to achieve the convergence of the series. But for less 

terms the series is divergent. 

 In the following figures  (5.3 - 5.5) we plot the results obtained in the present work using 

Gaussian potential and the results obtained in [10] using square well potential for nonzero 

CM momentum (K≠0) and for zero CM momentum (K = 0). In these plots the 

wavefunction is not allowed to vary with the vapor density. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Deuteron binding energy at T=10 MeV. The results from [10] for 

a square well potential are given by the red line for K≠0  and the black line for 

K=0. The present results for a Gaussian potential are shown by the blue line 

for the case of K≠0 and the green line for K=0. For both potentials, the 

wavefunction is not allowed to vary with the vapor density. 
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Figure 5.4: Deuteron binding energy at T=15 MeV. The results from [10] for 

a square well potential are given by the red line for K≠0  and the black line 

for K=0. The present results for a Gaussian potential are shown by the blue 

line for the case of K≠0 and the green line for K=0. For both potentials, the 

wavefunction is not allowed to vary with the vapor density. 

 

 

Figure 5.5: Deuteron binding energy at T=20 MeV. The results from [10] for 

a square well potential are given by the red line for K≠0  and the black line for 

K=0. The present results for a Gaussian potential are shown by the blue line 

for the case of K≠0 and the green line for K=0. For both potentials, the 

wavefunction is not allowed to vary with the vapor density. 
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From the figures above (5.3-5.5), we can see that the behavior of binding energy in all 

cases is the same; it decreases linearly with the vapor density. In the present work, the 

deuteron immersed in vapor of nucleons has higher Mott density at low temperatures and 

it can survive more before it dissolves. But at high temperatures it has lower Mott density 

than in [10] when K.≠ 0. 

When we compare the results for K=0 with K≠0, it is clear that the Mott density for the 

zero CM momentum case where the deuteron is assumed to be at rest is less than the case 

where the CM momentum does not equal zero. This is reasonable, because when the CM 

momentum of the deuteron equals zero the momenta of the nucleons inside this deuteron 

also equal zero which are the minimum and the effect of Pauli blocking will be large so 

the deuteron will dissolve. 

 In general, we can notice from the figures that the difference in the Mott density between 

the two cases; the square well and Gaussian potentials decreases as the temperature 

increases. 

To see what happens at absolute zero temperature (T = 0 MeV), we plot the deuteron 

binding energy in figure (5.6). 

According to Bose-Einstein condensation phenomenon, at absolute zero temperature (T = 

0) bosons tend to accumulate in the lowest possible energy state, and they have zero 

momentum (K = 0 ) which is already included in the calculations and  in the matlab code. 

For this reason, there is no need for the case of nonzero CM momentum. 
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The behavior of binding energy at T = 0 MeV in figure (5.6) is similar to its behavior at 

higher temperatures. The Mott density for present work is higher than the result reported 

in [10]. 

In chapter 6 we will study the behavior of the deuteron binding energy when its 

wavefunction is allowed to vary with vapor density. 

 

  

Figure 5.6: Deuteron binding energy at T=0 MeV. The results from [10] for 

a square well potential are given by the red line. The present results for a 

Gaussian potential are shown by the black line. For both potentials, the 

wavefunction is not allowed to vary with the vapor density. 
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CHAPTER 6 

USING THE VARIATIONAL PRINCIPLE TO DETERMINE THE   

GAUSSIAN WAVEFUNCTION. 

In this chapter we will find the binding energy for the deuteron immersed in a vapor of 

nucleons when the Gaussian wavefunction is allowed to vary with the density of the 

vapor, that is different from that of an isolated deuteron. 

6.1 FINDING THE VALUE OF   USING THE VARIATIONAL 

PRINCIPLE 

 The value of   in this chapter is not fixed so we will use the variational principle to 

minimize the deuteron energy with respect to   at each density. We will use the same 

formula for energy in equation (3.23) with    ,    ,       obtained in section 5.1 

  ⟨    | |    ⟩      
 

 
         

 

 
                            (6.1) 

Where   is the total density of the vapor,            are the integrals defined in equations 

(3.9), (3.18), and (3.19). 

 Since           depend on the density of the free nucleons (     ), the value of       

which achieves the self consistency for the total density can be found using the same 

method explained in section (5.1).The value of   in this chapter is not fixed and hence the 

initial value for the binding energy(  ) is not a constant , it depends on the parameter  . 

From equation (5.4)   
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At the value of       which achieves self consistency for      defined in section 5.1, we 

minimize the deuteron energy with respect to   to find its minimum value. We do this by 

plotting the deuteron energy in equation (6.1) versus   at each density   and find the 

minimum value for energy. 

To achieve self-consistency for the energy another iterative operation is performed. The 

iteration for energy should stop when the difference between two successive values for 

energy does not exceed 0.001 MeV as we said in section 4.2. 

For each   there is a certain value of   where the deuteron energy has its minimum (or 

the binding energy has its maximum). Which indicates that the value of   varies with the 

density  . We illustrate this by plotting the energy in equation (6.1) as a function of   for 

two different densities;                     and                    at the 

same temperature T= 10 MeV with K = 0. The results are presented in the figures(6.1)and 

(6.2).  

 

 

 

 

 

Figure 6.1: Deuteron energy as a function of   at         

nucleons/fm
3
, T = 10 MeV, K = 0. 
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From the figures (6.1) and (6.2) above, it is obvious that the value of   which minimizes 

the energy depends on the vapor density.  At                      the energy has 

its minimum              when              , while at                 

    the minimum energy              occurs when              . The two 

values were obtained at the same temperature           and with zero CM 

momentum. 

The same method is followed for other densities to find the value of   and its 

corresponding minimum energy. In the table (6.1) we summarize the results obtained for 

different densities at          with    .  

 

 

 (    ) 

                  
 

 

T= 10 MeV 

K= 0 

Figure 6.2: Deuteron energy as a function of   at         

nucleon/fm
3
, T = 10 MeV, K = 0. 
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Total density 

  (           ⁄ ) 
 (    ) The corresponding 

minimum  energy E 

(MeV) 

0   (isolated deuteron) 0.0936 - 2.2 

0.001 0.092 - 2.080 

0.002 0.090 - 1.959 

0.003 0.0880 - 1.840 

0.005 0.0840 - 1.612 

0.006 0.0824 - 1.503 

0.007 0.0810 - 1.396 

0.008 0.0790 - 1.293 

0.01 0.0752 - 1.094 

0.011 0.0730 - 0.9992 

0.012 0.0720 - 0.9069 

0.013 0.0700 - 0.8174 

0.015 0.0660 - 0.6464 

0.016 0.0650 - 0.5649 

0.018 0.0610 - 0.4099 

0.019 0.0600 - 0.3362 

0.022 0.0542 - 0.1308 

0.023 0.0536 - 0.06758 

0.024 0.0510 - 0.00672 

0.025 0.0492 0.05161 

Table 6.1: the values of      and their corresponding minimum energy for 

each   at T = 10 MeV with K = 0. 
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From the table (6.1) we can notice that the value of   decreases as the vapor density 

increases. 

Each value of   is found by plotting the energy of the deuteron versus the parameter   at 

each density   as shown in figures (6.1) and (6.2) for                    ⁄  and for 

                   ⁄ ,, then the value of   which minimizes the energy is recorded 

with its minimum energy. After that we plot the negative of the third column in the table 

(the binding energy) versus the total density   to find the Mott density; where the 

deuteron dissolves and becomes unbound.   

6.2 BINDING ENERGY RESULTS WHEN THE WAVEFUNCTION IS 

ALLOWED TO VARY WITH THE VAPOR DENSITY  
 

The results in table (6.1) at T = 10 MeV beside the results at other temperatures are 

presented in the figures (6.3-6.5) below. In each figure, we plot the deuteron binding 

energy versus the vapor density ( ) for zero CM  momentum (K = 0) and for nonzero 

CM momentum (K≠0). We compare the results for the case where the wavefunction is 

not allowed to vary (  is fixed) with the case where the wavefunction is allowed to vary 

(  is variable). 
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Figure 6.3: Deuteron binding energy at T=10 MeV. The present results for fixed η 

are given by the red line for K≠0  and the black line for K=0. When η  is variable, 

the present results are shown by the blue line for the case of K≠0 and the green line 

for K=0.  

  

 

 

Figure 6.4: Deuteron binding energy at T=15 MeV. The present results for fixed 

η are given by the red line for K≠0  and the black line for K=0. When η  is 

variable, the present results are shown by the blue line for the case of K≠0 and the 

green line for K=0.  
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From the three figures (6.3 - 6.5) above, we can see the effect of changing the parameter 

η with the vapor density on the shape of the binding energy curve. For this case, the 

binding energy decreases nonlinearly as the density increases, while for isolated deuteron 

where η is fixed, the binding energy decreases linearly. We can also notice that the 

deuteron will survive more when the Gaussian wavefunction varies with the vapor 

density. The decrease in the Mott density for the zero CM momentum case is expected 

for the same reasons explained previously in chapter 5.  

Now, we will make a plot for the deuteron binding energy as a function of the vapor 

density at absolute zero temperature (T = 0 MeV). 

Figure 6.5: Deuteron binding energy at T=20 MeV. The present results for fixed 

η are given by the red line for K≠0  and the black line for K=0. When η  is 

variable, the present results are shown by the blue line for the case of K≠0 and the 

green line for K=0.  
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The same behavior for deuteron energy can be noticed from the figure (6.6) at T = 0 

MeV. The Mott density is larger for the case at which the deuteron wavefunction is 

allowed to vary with the vapor density.  

There is no separate curve for the zero CM momentum case (K=0), because at absolute 

zero temperature all bosons tend to accumulate in the lowest possible energy state, and 

they have zero momentum (K = 0 ). 

Figure 6.6: Deuteron binding energy at T = 0 MeV. The black line 

shows the present results when η is fixed and the blue line for the 

present results when η is variable.  
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Chapter 7 

RESULTS AND CONCLUSION 

 

In this chapter, we will summarize our results for the Mott density, where the deuteron 

dissolves and its binding energy equals zero, using Gaussian potential and compare them 

with the results reported in [10] by using the square well potential.  

The new thing in our work is including the effect of the vapor density in the 

wavefunction. So we will compare our results for the case where the wavefunction is not 

allowed to vary with the vapor density with the other case where the wavefunction is 

allowed to vary with the vapor density. 

The values for Mott density for all cases can be summarized in the following table (7.1). 

Temperature 

(MeV) 

CM momentum 

(K) 

Results obtained 

in [10] 

(Square well 

potential) 

Results of the 

present work for 

fixed η 

(Gaussian 

potential) 

Results of the 

present work 

when η is 

notfixed 

(Gaussian 

potential) 

0  0.0012 0.012 0.016 

10 K = 0 0.009 0.017 0.024 

K ≠ 0 0.012 0.021 0.03 

15 K = 0 0.015 0.021 0.03 

K ≠ 0 0.022 0.026 0.039 

20 K = 0 0.023 0.025 0.036 

K ≠ 0 0.036 0.031 0.048 

Table 7.1:Mott densities for the deuteron at different temperatures obtained in 

the present work, along with those obtained in [10]. 
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From the table, we can notice that for all cases the Mott density increases as the 

temperature increases, which means that the deuteron survives more at higher 

temperatures. 

By looking at the cases of K = 0 and K ≠ 0 at each temperature, it is obvious that the 

deuteron with nonzero center of mass momentum can survive more before it dissolves to 

its constituents. The reason behind this is that the Pauli blocking has more effect in the 

case of zero center of mass momentum. 

The comparison between the results reported by Abdul-Rahman, Alstaty, and Jaqaman in 

[10] sing square well potential and the present work using Gaussian potential reflects the 

effect of the potential shape on the deuteron energy. We observe that at low temperatures 

the deuteron has much higher Mott density than in [10]. But this difference in the Mott 

density between the two studies decreases as the temperature increases.  

The effect of the dependence of the wavefunction on the vapor density can be noticed in 

the last column in the table. Obviously, the Mott density for the deuteron is higher than 

its value for other cases where the wavefunction is not affected by the density of the 

vapor.  

In this study, we used Gaussian potential and the variational principle to investigate the 

effect of the surrounding vapor on the deuteron stability and to find the Mott density . We 

considered that the vapor consists of nucleons and deuterons only. In the future, we can 

include other clusters present in the vapor, such as helion (
3
He) and alpha (

4
He) clusters. 
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Appendix A 

% BE when the wavefunction is allowed to vary with the vapor 

density 

hc=197.33;%blank constant 

mc2=940;%nucleon mass 

Mc2=1876.12;%deuteron mass 

gamat=0.238;%fm^-2 

gamas=0.1736; 

 

Ut=47.7;%MeV potential depth 

Us=28.3;%MeV potential depth 

 

 

b1=0.3535533905933; 

b2=-0.0049500897299; 

b3=1.483857713*10^(-4); 

b4=-4.4256301*10^(-6); 

b5=1.006362*10^(-7); 

b6=-4.272*10^(-10); 

 

KbT=15;%Mev 

beeta=1/KbT; 

 

 

 

rho=0.04 

foreta=0.045:0.001:0.048 

 

           I=rho   

 

rhofree = 0.00000005;  

 

while(rhofree<rho) 

 

 

eta 

 

 A=(2*eta/pi)^(3/4);%Normalization constant for the 

gaussianwavefunction 

 

bindenerg=-1.2;%initial value 

lam3=(2*pi*(hc^2)/(mc2*KbT))^(1.5); 

eita=(rhofree*lam3)/4; 

 

 

muu=(log(eita)+ 

b1.*eita+b2*(eita.^2)+b3*(eita.^3)+b4*(eita.^4)+b5*(eita.^5)+b6*(

eita.^6));%muu/KT for nucleons 

expmu=(eita*exp(b1*eita+b2*(eita^2)+b3*(eita^3)+b4*(eita^4)+b5*(e

ita^5)+b6*(eita^6)));%exp(muu/kt) 
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DD=0; 

 

while (1)%iteration to find the binding energy(negative value) 

 

 

 

expBofrho=exp(bindenerg); 

 

 

symsr; 

Expectfermion=((exp((-mc2*KbT*(r^2))/(2*(hc^2))))-(expmu)*exp((-

mc2*KbT*(r^2))/(4*(hc^2)))*(1/(2*(2^0.5))) + (expmu^2)*exp((-

mc2*KbT*(r^2))/(6*(hc^2)))*(1/(3*(3^0.5)))-(expmu^3)*exp((-

mc2*KbT*(r^2))/(8*(hc^2)))*(1/(4*(4^0.5)))+(expmu^4)*exp((-

mc2*KbT*(r^2))/(10*(hc^2)))*(1/(5*(5^0.5)))-(expmu^5)*exp((-

mc2*KbT*(r^2))/(12*(hc^2)))*(1/(6*(6^0.5))) +(expmu^6)*exp((-

mc2*KbT*(r^2))/(14*(hc^2)))*(1/(7*(7^0.5))))/(1-

((expmu)/(2*(2^0.5)))+((expmu^2)/(3*(3^0.5)))-

((expmu^3)/(4*(4^0.5)))+((expmu^4)/(5*(5^0.5)))-

((expmu^5)/(6*(6^0.5)))+((expmu^6)/(7*(7^0.5)))); 

 

 

Expectboson=(exp((-mc2*KbT*(r^2))/(4*(hc^2))) 

+((expmu^2)*(expBofrho))*exp((-

mc2*KbT*(r^2))/(8*(hc^2)))*(1/(2*(2^0.5))) 

+((expmu^4)*(expBofrho^2))*exp((-

mc2*KbT*(r^2))/(12*(hc^2)))*(1/(3*(3^0.5)))+((expmu^6)*(expBofrho

^3))*exp((-mc2*KbT*(r^2))/(16*(hc^2)))*(1/(4*(4^0.5))) 

+((expmu^8)*(expBofrho^4))*exp((-

mc2*KbT*(r^2))/(20*(hc^2)))*(1/(5*(5^0.5))) 

+((expmu^10)*(expBofrho^5))*exp((-

mc2*KbT*(r^2))/(24*(hc^2)))*(1/(6*(6^0.5))+((expmu^12)*(expBofrho

^6))*exp((-

mc2*KbT*(r^2))/(28*(hc^2)))*(1/(7*(7^0.5)))/(1+((expmu^2)*(expBof

rho))*(1/(2*(2^0.5)))+((expmu^4)*(expBofrho^2))*(1/(3*(3^0.5)))+(

(expmu^6)*(expBofrho^3))*(1/(4*(4^0.5)))+((expmu^8)*(expBofrho^4)

)*(1/(5*(5^0.5)))+((expmu^10)*(expBofrho^5))*(1/(6*(6^0.5))))+((e

xpmu^12)*(expBofrho^6))*(1/(7*(7^0.5))))); 

 

f=inline(exp(-

1*eta*r^2)*char(Expectfermion)*char(Expectboson),'r'); 

f2=inline(exp(-

1*(eta+gamat)*r^2)*char(Expectfermion)*char(Expectboson),'r'); 

f3=inline(exp(-

1*(eta+gamas)*r^2)*char(Expectfermion)*char(Expectboson),'r'); 

 

 

J=4*pi*A*quadl(f,0,1000000); 

J2t=-Ut*4*pi*A*quadl(f2,0,1000000); 

J2s=-Us*4*pi*A*quadl(f3,0,1000000); 
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bindenerg= (((3*(hc)^2)/mc2)*eta-

(Ut*(2*beta/(2*beta+gamat))^(3/2))-(0.375*conj(J)*J2t*rho)-

(0.125*conj(J)*J2s*rho)) 

 

DX= abs(bindenerg-DD) 

 

 

if (DX <=0.001) 

 

break 

 

end 

DD= bindenerg 

 

 

end 

 

 

%%deuteron 

 

KE2=(hc^2/(2*Mc2)); 

zzz=exp(-1*beeta*bindenerg)*exp(-2*muu); 

ff=(@(x)((x.^2)./((zzz*(exp(beeta*KE2*(x.^2))))-1))); 

 

q2 = quadgk(ff,0,inf);  

y2 =( 3*q2)/2*(3.14)^2; 

 

rhodeuteron=2*y2 

 

%total density 

tot=2*y2+rhofree 

rr=abs((tot-I)/I) 

 

if (rr<0.01) 

 

 

 

plot(eta,bindenerg) 

holdon 

 

break 

else 

 

rhofree=rhofree+0.00000005; 

 

I=tot 

 

end 

 

end 

end 


