FINDING THE BINDING ENERGY FOR A DEUTERON
IMMERSED IN A VAPOR OF NUCLEONS USING GAUSSIAN

POTENTIAL AND THE VARIATIONAL PRINCIPLE

oladiuly Gl glS il (e jla (G G sarall (55 gl Loy Sl 48U als)
Ol Tase 5 o sle e
By
SUHAD TAYSEER AHMAD DARAGHMA

May, 2018

Thesis committee:
Prof. Henry Jagaman (Principal advisor)
Dr. Wafaa Khater (Member)
Dr. Hazem Abu Sara (Member)



FINDING THE BINDING ENERGY FOR A DEUTERON
IMMERSED IN A VAPOR OF NUCLEONS USING GAUSSIAN

POTENTIAL AND THE VARIATIONAL PRINCIPLE

By
Suhad Tayseer Ahmad Daraghma

Henry J aqaméiri Ph.D. (Principal advisor)

Htow Tewnoo——

Wafaa Khater Ph.D. (Member)

el

Hazem Abu Sara Ph.D. (Member)

ﬂ\i
P

———

May, 2018



slaay)

A s a8 33 S (e ) gl o g8 e ) JiBa B slaad) i gale ()
o 5
98 9 s din ) W e g Wb gla Bl cillial 39S U (e ) e a gy a8 ar O )
5

8 shady 8 ghad (5 ) gdia (88 ) e ) Ay ady 9 0 B0 S

@5
caley Ao JAnal 9 Ao sua Ga

G Ugisa

a ale e S ) cdla jall 03a ) (A guag (8 abla (e IS ()

Al g A s

M YENPIN RV



ACKNOWLEDGEMENT

God has blessed me with the strength and power not only to accomplish this thesis but
also to enjoy every moment has spent on working as hard as | have done on it. | have
been thankful to Allah who eased the opportunities in front of me from the moment |

have started working on this thesis.

I would like to reflect on the people who supported me in any mean to complete this
work and to overcome all the difficulties and obstacles | have faced. A special
appreciation to my advisor Professor Henry Jagaman for the continuous support of my
thesis, for his patience, motivation, and immense knowledge. His guidance helped me in
all the time. Professor Jagaman’s office was always open whenever I ran into a trouble
spot or had a question about my research or writing. He steered me in the right direction

whenever he thought | needed it.

I would also like to thank all the faculty members at the Department of Physics,
especially the members of my advisory committee, Dr. Wafaa’ Khater and Dr. Hazem

Abu Sara for their valuable comments.

Finally, 1 must express my very profound gratitude to my family and to the endless
support, my husband for providing me with unfailing support and continuous
encouragement throughout my years of study and through the process of researching and
writing this thesis. This accomplishment would not have been possible without them.

Thank you.



BB g i gl 5 gl (pe (08 Aaiiia sl s Cla )3 (8 B2 s sall 5 BB AL 25 ) 53D )
dga e Al Apsdl) sda (alliad oda Liud )3 g smse 58 (35 o5 isallS Adial Lyil) e 2l LY
Al 455 8 adde o Lae J8 Led day J)) Al (f LS 6l s sl il 5 6 ANT 35581 (e Jamal) Jass )
S Joai s 3alal) o8 A8IS sl 5L J85 Jay ) Al g Ay il 5ol gy Alalae e 5 £l 853 e sl
O Aalll) 4l Ko ) 05 sl Ladie iy Al AEUKH g UL A e Lo Y Ay 0Ll

O sl
ok ol e ) Gy da (g ipall Iyl il e Ay gl salal) A0 Al o 13 Uiay 8 L N8
G e W) Cpm BT LS| uglad) deal) leadiad G (5 i gall o patll 43S 00 ) ddLaYly

Lol Tane ol asiuly Gl g ddamall 4y 5 5l 3alad) A8ES e salaic) 5 A\l



ABSTRACT

Nuclear clusters such as deuterons exist in nuclear matter at low density in addition to the
unbound protons and neutrons. The properties of these clusters including their binding
energies are affected by the surrounding vapor. Their binding energies are less than the
corresponding regular nuclei in vacuum and these binding energies decrease as the vapor
density increases. When the density reaches the Mott density, at which the deuteron
dissolves and becomes unbound, the Mott transition occurs, the deuteron dissolves and
becomes unbound. In our research we study the binding energy of a deuteron immersed
in a vapor of nucleons as a function of the nuclear number density by taking into account
the Pauli blocking shift and the center of mass (CM) momentum. We also include the
change in the internal wavefunction in the presence of the vapor by using the Variational

Principle.
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CHAPTER 1

INTRODUCTION

The properties of the nucleus and its physical behavior can be studied using different
nuclear models. One of these models is the liquid drop model which describes finite
nuclei. In this model the nucleus is considered as an incompressible liquid droplet with a
sharp boundary and uniform density with the existence of the coulomb energy associated
with the protons. The particles at the surface of the nucleus interact less than the particles

in the interior of the nucleus and this is similar to the surface tension of the liquid.

We know that the volume of a droplet of a liquid increases with increasing the number of
atoms in it. The same happens with the nucleus in the liquid drop model, the volume of
the nucleus is proportional to the number of nucleons contained in it [1-2].

The features of the liquid drop model lead to the Bethe - Weizsacker formula for the

binding energy of a finite nucleus of Z protons and N = (A —Z) neutrons [3]

B(Z,A) = ayA — a Ai —a, % — Asymm (A'jz)z + AE, g (1.1)
The parameters in the equation (1.1) above are [3]
@, volume term 16 MeV
a,: surface term 17 MeV
a.: coulomb term 0.6 MeV
Asymm: Symmetry term 25 MeV

Table 1.1: The parameters in Bethe -Weizsacker formula




6 for even — even nuclei 2
AE,qir =1 0 forodd —evennuclei ,Where & = ZMeV
—¢ for odd — odd nuclei

The first term is the volume term, the volume V of the nucleus is proportional to R3

vV =1nR? (1.2)
where R is the radius of the nucleus is given by the equation

R = ryAY/3 (1.3)

with r, = 1.2 fm and A4 is the number of nucleons.
By substituting (1.3) in (1.2) we can notice that the volume is proportional to the nucleon
number A.
The decrease in the binding energy due to the number of nucleons on the surface is given
by the second term. The third term results from the repulsive coulomb interaction
between all protons in the nucleus. Each pair of protons contributes to the Coulomb term
equally, the number of protons is Z, so the number of proton pairs is Z(Z-1)/2. The fourth

term which includes the quadratic dependence on (A4 — 2Z) is very important for light
nuclei, it expresses the fact that nuclei with Z = % are expected to be more stable because

the protons and the neutrons will occupy the lowest energy state. This term is called the
symmetry term because it tends to make the nucleus symmetric in protons and neutrons
Z ~ N. The last term in equation (1.1) AE,;, is the pairing energy, it takes into account
the tendency of like nucleons to form pairs in order to decrease the energy of the nuclear
system. If both N and Z are odd the nucleus will usually be unstable and one of the odd
neutrons will be transformed into a proton or vice versa by beta decay to form a pair,

while if both N and Z are even the nucleus will be more tightly bound than if they are odd



integers. But if the total number of nucleons is odd (N or Z is odd) the pairing energy
term has no contribution [1, 4] and this is clear from the values of the parameter AE,, ;.

If we divide equation (1.1) by A we get the binding energy per nucleon for finite nuclei

B(Z,N) _ as Z(z-1) (N-2)2 | AEpgqir

A = O T T G Gymm gty

In [4] it is shown that the value of binding energy per nucleon is about 8 MeV which is
relatively constant except for light nuclei with A < 20.

Another characteristic for finite nuclei is their density (p) which is about:

p =~ 0.14 nucleon/fm3 in the core of the nucleus but this quantity decreases gradually
to zero with radial distance in the surface region. We can notice this from the figure (1.1)
below which shows the charge density (protons density) for oxygen (:°0), nickel (*®Ni),

and lead (*®Pb) [4].

0.10—

0.05

Charge density (protons/fm?)

0.00
0

r (fm)

Figure 1.1: Charge density for several nuclei as a function of radial distance r

In figure (1.1), if we look at heavy nuclei like lead (Pb®®), it is clear that the charge

density is roughly constant, about 0.07 protons/fm3. Since we can consider the neutron



and proton densities are the same, the nucleon density for lead will be approximately
0.14 nucleons/fm3. But this value drops slowly to zero over a distance t of about 2.3
fm. The parameter t is called the skin thickness parameter and it represents the distance at
which the charge density of the nucleus drops to 10% of its central value. The value of t
is approximately the same for all nuclei (2.3 fm), it does not depend on the size of the
nucleus.

For ideal system of interacting nucleons with uniform density we use nuclear matter
(infinite nuclear matter) instead of finite nuclei. In nuclear matter the number of nucleons
(A) is infinite and the Coulomb force is switched off. For more simplification, we can
assume that nuclear matter is symmetric so N = Z.

The binding energy per nucleon for nuclear matter and the saturation density are
fundamental constants of nature [5]. These constants can be determined from two
different sources, the Bethe -Weizsacker formula and electron scattering on finite nuclei.
To find the binding energy per nucleon for symmetric nuclear matter we can use the
Bethe -Weizsdcker formula. Since A is infinite and the Coulomb force is switched off
and N = Z all terms in the formula vanish except the volume term. So the binding energy

per nucleon for nuclear matter is

B(ZN) _
A - v

From the table (1.1) above, the value of a,, is 16 MeV and hence the binding energy per
nucleon for nuclear matter is 16 MeV which differs from the value of 8 MeV for finite
nuclei.

The saturation density of nuclear matter can be obtained from electron scattering on finite

nuclei and its value is about [3]



po = 0.16 + 0.02 nucleons/fm3

This density is uniform throughout the nuclear volume and it is the central density of
heavy nuclei. Due to the absence of a surface region in nuclear matter, the saturation
density differs from the density for finite nuclei which is approximately
p =~ 0.14 nucleon/fm3

Nuclear matter exists in two phases; it can exist in a dilute gaseous phase or it can exist in
a liquid phase with closely interacting nucleons. The transition between these phases can
occur; the nuclear matter transfers from the liquid phase to the gaseous one where the
average inter-particle distance is much larger than the range of the inter-particle
interaction [6]. The liquid-gas phase transition occurs in general in systems with short-
range repulsive and longer-range attractive forces [7]. The transition between the phases
occurs at all temperatures below a critical temperature. At these temperatures, the two
distinct phases coexist; matter inside the nucleus is in the liquid phase while the
surrounding external matter is in the gaseous phase [8]. The behavior of the phase
diagram of nuclear matter isotherms introduces theoretical evidence of the coexistence of
these phases. These isotherms are very similar to those obtained from a Van der Waal
equation of state [9]. At the critical temperature, the distinction between these phases
disappears. Above this temperature only the gaseous phase can exist. In [6] Jagaman
investigated the occurrence of liquid-gas phase transition in finite nuclei and he found
that there is a reduction in the critical temperature as compared to the infinite nuclear

matter.



At very low densities, less than one tenth of the nuclear saturation density p,, nuclear
matter exists in a dilute gaseous phase while at higher densities it exists in liquid phase

with closely-interacting nucleons [10].

Much below the saturation density, at one hundredth or one thousandth of saturation
density, clusters are formed in the gaseous phase to minimize the energy of the system
[11-12]. The binding energy for these clusters depends on the density of the surrounding
vapor. As the density of the surrounding vapor approaches zero the binding energy for
the light clusters becomes very close to the binding energy for isolated nuclei with the
same number of protons and neutrons. The formation of light clusters, up to the alpha
particle, in nuclear matter at finite temperature and very low density was investigated by
Typel et. al [11]. They also studied the dissolution of these clusters due to medium effect
using the microscopic quantum statistical (QS) approach and a generalized relativistic

mean field (RMF) model.

In 2006, the formation of clusters in low density nuclear matter composed of protons,

neutrons, and alpha particles was studied in [12] using the virial expansion.

Beyer et. al. [13] found that for the clusters immersed in a vapor of nucleons, the Pauli
blocking has to be taken into consideration in addition to the self energy shift. The Pauli
blocking effect is related to the Pauli Exclusion Principle which prevents two identical
nucleons from occupying the same quantum state. For clusters immersed in a vapor of
nucleons, Pauli blocking effect is caused by the indistinguishability between the nucleons
inside the clusters and the free nucleons in the surrounding vapor. As a result, the total

wavefunction involving the nucleons inside and outside the nucleus should be



antisymmetric [1, 3]. By increasing the density of the nucleons in the vapor the binding
energy of the cluster is decreased because of Pauli blocking [13]. When the density
reaches the Mott density, at which the cluster has zero binding energy, the Mott transition
occurs, the cluster dissolves and becomes unbound and this depends on the momentum of

its center of mass and on the temperature.

In our work, we are interested in studying the medium effect on the deuteron which is the
simplest bound state of nucleons since it consists of a proton and a neutron only [1]. We
will see what will happen for the binding energy of the deuteron when it is immersed in a

vapor of nucleons and what is the effect of Pauli blocking on the Mott density.

In studies [11, 14], the formula for Pauli blocking was found indirectly by calculating the
Pauli blocking energy shift at zero CM momentum for the deuteron, and then some

approximations and fits were used such as angular averaging.

In a recent work, Abdul-Rahman, Alstaty and Jagaman [10] used the methods of quantum
and statistical mechanics to calculate the binding energy for the deuteron in low density
nuclear matter and to get a formula for the Pauli blocking shift that explicitly depends on
the deuteron CM momentum with no fits. They found the Mott densities at different
temperatures, for the two cases of zero and nonzero CM momenta for the deuterons and
compared them with values obtained by Typel et al [11]. They found that the Mott
densities they got at low temperatures are approximately twice larger than the densities
obtained by Typel et al and at high temperatures they are three times those of Typel et al.
In [10] it was assumed that the internal wavefunction of the deuteron is not affected by

the presence of the vapor. What we want to do in the present work is to include the



change in the internal wavefunction in the presence of the vapor by using the variational

principle.

We will start this thesis by explaining the main properties of the deuteron in addition to

the main characteristics of the nucleon-nucleon interaction. We will do this in chapter 2.

In chapter 3, we will construct the wavefunction for the deuteron-nucleon system where
the deuteron and the free nucleon are confined in a small box, then we will find the
energy expectation value for the deuteron-nucleon system and write the binding energy

formula including all nucleons in the surrounding vapor.

The expectation value for the quantities which include the CM momenta is calculated in
chapter 4 at high temperatures and at absolute zero temperature. The depth and the range
for the Gaussian potential are determined in chapter 5. In the same chapter, the Gaussian
wavefunction parameter (n) is evaluated for the case where the wavefunction is not
affected by the vapor density, then the results for binding energy and Mott density are
compared with the results in [10]. In chapter 6, the wavefunction is allowed to vary with
the vapor density, and the variational principle is used to evaluate the value of n to find
the Mott density for the deuteron at different temperatures. At the end, in chapter 7, we

will summarize and discuss our results



Chapter 2

THE DEUTERON

In this chapter, we will discuss the main properties of the deuteron and some

characteristics of the nucleon-nucleon interaction.

2.1 PROPERTIES OF THE DEUTERON

The deuteron is the simplest two-nucleon bound system; it consists of a proton and a
neutron held together by attractive forces. Due to this simplicity, the deuteron gives us an

ideal system for studying the nucleon-nucleon interaction.

The binding energy for any nucleus is defined as the negative of the difference between

the nuclear mass and the sum of the masses of the constituents
By = —(My, — zmy, — (A — Z)my,)c? (2.1)

Where M,, is the nuclear mass, m, is the proton's mass, m, is the neutron's mass, Z is the
number of protons and A is the mass number. For the deuteron, the binding energy is
2.225 MeV which is relatively small compared with typical nuclei for which the average
binding energy per nucleon is about 8 MeV. Because of the small binding energy, the
deuteron is a weakly bound system and it has no excited state [1, 4, 15]. The main ground

state properties of the deuteron are listed in the table (2.1) below [3].



Ground state property Value

Binding energy, B, 2.22457312(22) MeV
Spin and parity, J™ 1t

Isospin, T 0

Magnetic dipole moment, u 4 0.857438230(24) uy
Electric quadrupole moment, Q4 0.28590(30) e. fm?
Matter radius, 74 1.963(4) fm

Table 2.1: Ground state properties of the deuteron

The total angular momentum J of the deuteron is the sum of 3 terms which are the
individual spin of the proton s, and of the neutron s, each with spin 1/2 because they are
fermions, and the orbital angular momentum L of the nucleons as a result of their motion
about their center of mass. L can take the values 0, 1, 2, 3, ..., which are usually called S,

P, D, F, .... states. So the total angular momentum J of the deuteron can be written as

J=S+L

Where S = s, + s, is the total spin [4]. The total angular momentum of the deuteron is
J=1[1]. The proton and neutron spins can be either parallel for a total spin of 1(S=1)
which is the triplet state, or antiparallel for a total spin of 0 (S=0) which is the singlet
state. To get J=1 there are four combinations between S and L.

a) S=1 with L=0,

10



b) S=0 with L=1,
¢) S=1 with L=1,
d) S=1with L=2,

But which one of these combinations is accepted? This can be determined after we know

the parity of the deuteron.

The parity determines the behavior of the wavefunction when 7# - —7. By studying the
reactions involving deuterons and the properties of the photon emitted during the
formation of the deuterons, it was found that the parity of the deuteron is positive. But the
wavefunction of the deuteron is the product of the intrinsic wavefunction of the proton,
the intrinsic wavefunction of the neutron and the orbital wavefunction for the relative
motion of the proton and the neutron. The parity of intrinsic wavefunctions of the proton
and the neutron are the same because they are two different states of the nucleon so the
product of their intrinsic wavefunction is positive. From [16] we know that the parity
associated with orbital motion is determined by the factor (-1)- because the angular
dependence in the wavefunction of the deuteron is given by the spherical harmonic Y,
and when the parity operation is applied t0 Yim, Yim(m-0, ¢+m) = (-1)" Yin(0, ¢) it
gives a phase (-1)". So the positive parity will be for L=0 which is the S state and for L=2
which is the D state. Now we can eliminate the combinations which include L=1. It is
clear now that it is impossible for the deuteron to be in the singlet state where s, and s,

antiparallel with a total spin 0 (S=0), but it exists in the triplet state (S=1) [4].

11



The two possibilities of L indicate that both the triplet S state with L=0 and total spin
S=1 (®s;) and the triplet D state with L=2 and total spin S=1 (°D;) components appear in

the ground state wave function of the deuteron
l/)d = 65351 + CD3D1.

The triplet S state (3S;) is spherically symmetric since it doesn't have angular
momentum, but the existence of triplet D state (°Di) breaks this symmetry. The
coefficients Cs and C,, can be determined by the electric quadrupole and the magnetic

dipole moments beside the normalization condition
Cs? +Cp2 =1

The electric quadrupole moment measures the departure (the deviation) from a spherical
charge distribution of a nucleus. For pure 3S; state the electric quadrupole moment is
zero, but for the deuteron, the electric quadrupole moment is a positive quantity (Q; =
0.28590 e. fm?) which is an evidence for the presence of the 3D, in the ground state for

the deuteron.

On the other hand, the magnetic dipole moment of the deuteron also indicates that the
ground state of the deuteron is a mixture of 3S;and 3D,. This can be verified by
calculating the magnetic dipole moment for the ground state by assuming that the
deuteron has no orbital angular momentum (L=0, S state), and so the magnetic dipole
moment is the sum of the magnetic dipole moments for the free proton and free neutron,

where the magnetic dipole moment for the proton is u, = 2.7928456 uy, while for the

neutron is u, = —1.9130418 uy with u, + u, = 0.8798038 uy, but the experimental

12



value of the deuteron magnetic dipole moment is pu; = 0.8574376 uy [4]. The small
difference between u, and p, + pyindicates that the ground state of the deuteron is not
a pure 3S;state, the 3D, state has a small but nonzero contribution to the deuteron's

ground state.

Using the experimental values for the electric quadrupole moment and the magnetic
dipole moment of the deuteron beside the normalization condition it is found that the
probability of the deuteron to be in the 3S; state (Cs2) is about 96% and the probability to
be in the 3D, state (Cp? ) is about 4%. This means that the 3S; state is dominant in the
ground state of the deuteron, while the 3D; state has only a small contribution. Because
of the presence of 3D, state we conclude that the nucleon-nucleon interaction is not
spherically symmetric and hence it is not a purely central potential. This combination
between 35 state and 3D, state has a very important role in the study of the properties of

the nucleon-nucleon interaction.

2.2 NUCLEON-NUCLEON INTERACTION

As we mentioned at the beginning of this chapter, the deuteron gives us an ideal system
to study the nucleon-nucleon interaction, which plays a vital role in understanding the
nuclear force. In principle, the existence of stable nuclei implies that the net nucleon-
nucleon force must be attractive and much greater than the Coulomb force. Of course this
attractive force is not electric because the neutrons have no charge [2]. So what is the
nature of these forces? How do they depend on the distance between nucleons and on

their spins?

13



Nucleons (protons and neutrons) are not elementary particles, they are the bound states of

three fermions with spin 1/2 which are called quarks.

The proton consists of two up quarks and one down quark (proton=uud), whereas the
neutron consists of two down quarks and one up quark (neutron=udd) [17]. The
difference between their masses is relatively small. It was found that the mass of the
proton is 938.272 MeV/c? while the mass of the neutron is 939.566 MeV/c?. They differ
only by 0.1% [3].

The charge of the up quark is + 2/3 e, where e is the magnitude of the electric charge of
the electron which is equal to 1.60217733(49)x10™"° C, and the charge of the down quark
is -1/3 e. From this, it is easy to conclude that the charge of the proton is +1e while the
neutron is neutral [3].

Both proton and neutron have spin 1/2 so they are fermions, particles that obey Fermi-
Dirac statistic. When nucleons interact with each other the Pauli exclusion principle must
be applied and the total wavefunction should be antisymmetric [3].

The proton and the neutron can be considered as two states of the same particle. They are
similar in most of their properties; both have spin 1/2 and their masses are very close to
each other, they differ only by about 0.1%. The main difference between the proton and
the neutron is in their electromagnetic properties. But if we are dealing with the strong
interaction we cannot distinguish between them, they will be considered as 2 states of the
same particle.

To distinguish between them we need a new label, this label (operator) is the isospin. The

value of the isospin for the nucleon is t=1/2. The proton and the neutron are two different
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states of the nucleon, they differ by the third component of isospin operator to. While the
neutron has to= +1/2 the proton has to= -1/2.

In addition to the protons and neutrons, there exist many particles that consist of quarks
and antiquarks. The most important particles for nuclear physics are the three pions
(n*,7° 1) [1]. The m*is made up of an up quark and an anti-down quark (z+ = ud),
while the m~consists of a down quark and an anti-up quark (7~ = d#), and =° is

uu—dd

V2

composed of a mixture of up, anti-up, down, and anti-down quarks (7° = )[18-19].

The oldest attempt to explain the nature of the nuclear force was proposed by Yukawa in
1934. He supposed that nucleons are attracted together due to exchange of quanta of
nonzero mass, which were later identified as the pions (r*,z° ") [20].

If we are interested in the low-energy region where the nucleons hardly get excited
internally, we can treat the nucleons as inert, structureless elementary particles, and we
can understand many of the properties of the multi-nucleon systems by the nucleon-
nucleon interactions.

The main features of the nuclear force can be summarized as follows:

1. The nuclear force has a finite range. This property can be deduced by noticing
that the binding energy per nucleon (8 MeV) [3] and the densities of heavy nuclei
(0.16 + 0.02 nucleons/fm3) [3-4] are nearly constant. If the range of the
nuclear force were infinite then both quantities will increase by increasing the

number of nucleons.

2. The nucleus contains protons and neutrons. In spite of the existence of the

repulsive force between protons the nucleus is stable. This stability is caused by
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the existence of the nuclear force which is a short-range attractive force; the range
of this force is about 1.4 fm which is in the order of nuclear radius. The reason
that nuclear force has a short range comes from the exchange of pions between
nucleons inside the nucleus which was proposed by Yukawa. By considering that
when two nucleons interact they exchange the pion with mass m = 140 MeV /c?
[21], then the energy violation AE of this particle is approximately mc?, where ¢

is the speed of light.

From the uncertainty principle the pion can exist for a time interval

At =~ — = (2.2)

AE mc?

Where # is the reduced Planck constant. If one considers, at most, that the particle
moves with the speed of light c, then, during the time interval At it can travel, at

most, a distance cAt. If we take this distance to be the range of nuclear force then

hc

mc?

the range of the nuclear force = cAt = ~ 14 fm
but the nuclear force rapidly decreases to zero beyond this distance. At short

distances (less than 0.6 fm) [22], the interaction between nucleons becomes

repulsive due to the exchange of other mesons like w = (uﬁ\/gdd) and p =

(uﬁ+d&—s§

NG ) where s is the strange quark [19, 22-23]. This repulsion protects the

nuclei from collapsing and it is responsible for the size of the nuclei.

. The nucleon-nucleon interaction is strongly spin dependent. This property is

mainly predicted from the fact that only the triplet state exists in the deuteron. As
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a result, an additional term which depends on the spins of the two nucleons, s;and
S,, must be added to the central potential. Experiments indicate that nuclear forces
satisfy certain symmetries such as invariance under parity (# - —7) and time
reversal (t - —t),s0 the spin term must also satisfy the parity and the time
reversal invariances.

The nucleon-nucleon force has a non-central or tensor component. This part of the
force does not conserve orbital angular momentum, which is a constant of motion
under central forces [4]. We mentioned above that there is a combination between
35, state and 3D, state where 35, state is dominant while 3D, state has a small
contribution. This indicates that a small non-central force component must be
added to the central dominant force between two nucleons. As the only reference
direction for a nucleon is its spin, the tensor force term depends mainly on the
separation position vector 7 and the spin of the nucleon s. Thus there are only two
terms relating 7 and § with each other that can contribute, (s.7) or (s x 7). For
two nucleons with spins s;and §,, the tensor potential depends on the terms
(5,.7)(5,.7) or (s; x 7). (s, x 7). But we can write the second term in terms of
the first with an extra term r2(5;.5,) using the properties of dot and cross
products. (81 X 7). (8, X #) = $5.(F X (8, X 7)) = §,. (5, . ) — #(.51))
=1%(3..5,) — 1. ) (2. 7))

As a result, the tensor character of the nucleon-nucleon interaction can be written

3 g .-> g .—) - - - - = = -
as Sy, = W— 5;.5,. If we consider infinite nuclear matter with many
nucleons, the tensor term can be ignored because the average over all angles is

Zero.
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5. The nucleon-nucleon interaction is assumed to be charge independent [4, 20].
This means that the proton-proton, the neutron-neutron, and the proton-neutron
interactions are identical although there is a very small difference (of order 1%)
between the potentials of the proton-neutron interaction from one side, and the

proton-proton and neutron-neutron interactions from the other side [4].

Determining the correct potential between the nuclear particles is one of the important
questions in nuclear physics. The proper potential helps us to calculate the main

properties of the nucleus and compare the results with experimental data.

The forces between nucleons have a very short range which is about 1.4 fm, they are
very strong within this range but rapidly decrease to zero beyond a certain distance so

we need a rapidly decreasing function.

In nuclear physics, the interaction potential between two nucleons may have different
forms such as the square well, Yukawa potential, Gaussian potential, or more
complicated forms. Actually, the results are independent of the shape assumed for the
potential. The common characteristic of these potentials is that they depend only on

the inter-nucleon distance [2].

In [10], Abdul-Rahman, Alstaty and Jagaman used a square well potential which is
easier to handle analytically. But in nature, the potential is not expected to be so

sharply cut off.

In our work we propose a more realistic form of the potential, Gaussian potential, as

will be discussed later in chapter 5
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CHAPTER 3

THE WAVEFUNCTION OF THE DEUTERON-NUCLEON

SYSTEM

In the previous chapter we discussed the main properties of the deuteron and the main
features of the nucleon - nucleon interaction. In this chapter we will use our knowledge
about this interaction to construct the wavefunction of the deuteron-nucleon system,
which consists of a deuteron and an external nucleon in a low density medium, which

interact via Gaussian interaction.

3.1 CONSTRUCTION OF THE DEUTERON-NUCLEON

WAVEFUNCTION

The deuteron is a two-body system which can easily be converted to a one-body system
after separating the center of mass motion from the internal motion. In light of separation,

the deuteron wave function, v, (7;,7,), can be written as:

Ya(71,72) = Yeu (lez)g(ﬂz) (3.1)

Where 1/)CM(¥) is the center of mass wavefunction, g(#,) is the internal
wavefunction, 7, and 7, are the positions of the proton and the neutron inside the

deuteron. 7, is the relative distance between the two nucleons with respect to each other

(F12 = 772 - 71)-
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Assuming that the deuteron has a CM momentum AK and is confined inside a box of
volume L3, where L is much larger than the size of the deuteron, then the spatial

wavefunction of the deuteron is

.= (T147
lK(l 2

Yauty) = e g () (3.2)

Now, for the deuteron-nucleon system, assuming without loss of generality, that the
external nucleon is a neutron with position 7#; and momentum #k and spatial

wavefunction

P (75) = =5 etk (3.3)

L3/2

Now, the spatial wavefunction of the deuteron-nucleon system will be
> > - 1 '_)_ m P
O o, 1) = gi) & e K (57 ik (3.4)

The form of g(#,,) depends on the type of potential used to describe the interaction
between the nucleons inside the deuteron. In Abdul-Rahman, Alstaty and Jagaman [10]

they used the square well potential, but in this work we will use the Gaussian potential.

The deuteron-nucleon system has two identical particles; the free neutron and the bound
one inside the deuteron. The neutrons are fermions, hence the total wavefunction (spatial
and spin parts) of the system should be antisymmetric under the exchange of the two
neutrons, so we have to take the spin part to be symmetric if the spatial part is

antisymmetric, and vice versa. As a result, the total wavefunction of the system is given

by
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- o> o 1 > o> o - 2> o
Weot (P, 72, 13) = \/;{Lpa (1, 75, 73) 211n=—1 Xim (2,3) + Ws(71, 72, 3) X00(2, 3)} (3.5)

Where y1m(2,3) and y,0(2,3) are the 3 triplet and 1 singlet spin states for the two
neutrons. We ignore the spin of the third non-identical particle (the proton) as the

wavefunction symmetrization only applies to identical particles.

The bound nucleons inside the deuteron are found in the triplet spin state only as we
mentioned in the previous chapter, but in equation (3.5) we also take the singlet spin state
into consideration because we study the interaction between the nucleons inside the

nucleus and the free nucleon, and they can interact through the triplet and singlet

interactions with probabilityz and i respectively.

In equation (3.5)
¥, = N[O(#, 7y, T3) — O, 75,75)] (3.6)
P, = N[0(F, 75, 75) + OF , 75, 75)] (3.7)

which are respectively the antisymmetric and the symmetric forms of the spatial

wavefunction @ which is defined in equation (3.4).

The normalization constants N and N' are given by

_ 1 ' 1
V2 1—[|I|2/L3] nd N VZ 1+ [IIIZ/Lg] 49
Where ] = fg(r)ei(g_z)' T &3y (3.9)

It is found typically that |J|? « L3, so both N and N — % [10].

21



3.2 ENERGY EXPECTATION VALUE FOR THE DEUTERON-
NUCLEON SYSTEM

The total wavefunction of the system is found in equation (3.5) to be

1
> oS> o 1 > oS> o > > o
Yot (71, 72, 73) = \/;{Wa(rl,rz,ré) 2 Xim (2,3) + W (71, 72, 73) X00(2, 3)

m=-1

Since the triplet and singlet spin wavefunctions are orthogonal then the expectation value

of the energy for the system is
(Frocl HPror) = 2 (WalHW,) + = (Wl W) (3.10)

Where H is the Hamiltonian of the system.

By using the equation (3.6), the first term in the equation (3.10) above will be simplified

as follows
(Y| H|¥,) = N2 [< ©(1,2,3)|7(1,2,3)|0(1,2,3) > —< 0(1,2,3)|7(1,2,3)|0(1,3,2) >
- < 0(1,3,2)|#%(1,3,2)|9(1,2,3) > +< 0(1,3,2)|H(1,3,2)|9(1,3,2) >] (3.11)

The Hamiltonian of the system should be symmetric in the two neutrons 2 and 3,s0

H(1,2,3)=H(1,32) =H.

Moreover, we integrate over 7, and 7; so we can exchange the labels of 2 and 3 in the
last two terms. Then we can see that the first and the last terms are the same and the

second and the third terms are the same, so that
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(P,|H|¥,) = 2N2 [< 0(1,2,3)|# (1, 2,3)]0(1,2,3) >
—< 0(1,2,3)|#(1,2,3)|0(1,3,2) >] (3.12)

(V| H|Ps) is the same as (W, |7 |W,) but with a positive sign instead of the negative sign

between the two terms in equation (3.12).

The Hamiltonian H (1, 2, 3) can be written as
h? o h? o
.7'[(1, 2, 3) = h12 - ﬁlez - %V,% + V(Tlg) + V(T23) (313)
Where h,, is the internal Hamiltonian of the deuteron with the reduced mass u

hZ
hlZ = _sz + V(le) (314)

T12

the second term in equation (3.13) is the kinetic energy of the CM motion of the deuteron
with total mass M=2m, the third term is the kinetic energy of the external neutron with

mass m, and V' is the nucleon-nucleon interaction. Now, equation (3.12) will be

hZ
(FalF1P) = (Falhial¥) + (Wa 2V, | ¥,
hZ
+ (W]~ 2 |w0) + (WalV (r0) + V() I0) (315)

The first term(¥,|h,,|¥,) = —B, is the binding energy of an isolated deuteron, the

2
_h_VZ
oM | Riz

212
second term <‘Pa ‘Pa> = hz—z is the kinetic energy of the cluster (deuteron),
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The third term < a

_h_ZVZ
2m '3

‘Pa> = % is the kinetic energy of the free nucleon. To find

the fourth term we will use equation (3.6)
(PalV (r13) + V(r23)I'Wa) = 2N*(B(1,2,3)[V (113) + V (r23)|0(1,2,3))
—2N%(0(1,2,3)|V(r13) + V(r3)|0(1,3,2)) (3.16)
The first term in the equation (3.16):

2N2(@(1,2,3)|V (113) + V(13)]0(1,2,3))

2N2 T1+72) -
-5 || e R kB (1) + V()] 9(rip)e™ 5 el a3y dirdr,
2N2

]j |9 (i) 12[V (ry3) + V(123)] d3ryd3ryd3rs

ﬂf|g(7"12)| V(ry3) d*ryd®r,d3rs + ﬂf|g(7‘12)| V(rys) d*rd®r,d3r; (3.16.a)
Now the second term in (3.16):

2N%(0(1,2,3)|V (r13) + V(r23)10(1,3,2))

2N? 1473\ - .

N ffjg (7"12)3 K ) _lkr3[V(7’13) +V(r23)]g(r13)e '(—)elk'rz d3rd3ryd3r;
2N?

= jjjg (T12)€ K ) ik (7~ r3)[V(T13) + V(r23)]g(r13) d>ryd3ryd>rs

2N? iR )
= jjjg (ri2)e (k. (2~ r3)V(7"13)g(T13) d3rd3ryd3ry

2 o (Ta=T3\ o~ .
+ %fﬂ g*(T12)€_lK'(%)elk'(rz_r3)V(7”23)g(7”13) d°rd°ryd’rs (3.16.0)
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h2K? = h2k?
2M 2m

(Tal}[lqla> =—By+

2 2
+ ZLla JINg(riz)2V (r13) dPrdPrydrs + ZLLG JINg(riz) 2V (1r3) dridPrydrs

T2-T3

_iieszfg*(r12)e_il?-( 2 )eiz'@_@)V(rB)g(rB)d3r1d3r2d3r3

2 (T2-T3

2 . s o
- 2Ll6 i) 9*(r12)€_lK'(T)elk'(rz_r3)V(Tz3)g(T13) d’r d’ryd’ry (3.17)

As we mentioned above, B, is the binding energy of the free deuteron, the second and the
third terms are the kinetic energies of the deuteron and the external neutron. The fourth
and fifth terms represent the self energy, while the sixth and seventh terms represent the
Pauli blocking. The kinetic energy terms do not contribute to the binding energy. The self
energy is the interaction between the nucleons inside the deuteron and the free nucleon
and it is almost the same whether the nucleons are bound to form the deuteron or
unbound. So when we calculate the difference between the expectation value of the

Hamiltonian when the constituents of the deuteron are bound and when they are unbound

(Ttotl}[ll{’tot> - <\Ptot,un|}[|lPtot,un>

the value of self energy is negligibly small and we can ignore it. We are left with the
Pauli blocking terms which are the sixth and the seventh terms, but the seventh term in
equation (3.17) is very small and we can neglect it[10], so the most important term is the

sixth term which contains V (ry3).

The nucleons inside the deuteron always interact with each other via the triplet

interaction but at the same time they interact with the free nucleon via the triplet
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interaction with probability of 3/4 and singlet interaction with probability of 1/4. So
V(ry3) =2Vt+iVS where the subscripts t and s refer to the triplet and singlet
interactions respectively.

So the 6™ term in equation (3.17) will be

Tp-T3

_ZLl:ﬂf 9*(712)9_“?( 2 )eiﬁﬁz_%) EVt + iVS] g(r13) d*rid’ryd’rs

2N2 . ~i(%-% (Po—73) [3 1
- _L_afffg (ri2)e 1(2 ) o [ZVt+ZVS]9(T13) d*rid*ryd’rs
To solve the integral we will make the following transformation:

The Jacobian for the transformation above is which is equal to one.

0 T3 d ‘Fg d ‘Fg

We will illustrate this by evaluating the Jacobian in one dimension for x :

X11 = X1, X12 = X3 — X1, X913 = X3 — X1

So we can write x4, x, and x5 in terms of x,4, x;, and x5

X1 = X11, Xy = X171 + X12, X3 = X11 T X13
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0x, 0x; 0x4

0xy1; 0x15 0Xq3

dx, 0x, 0x, 100
=11 1 0|=1
0xy1 0x15 Oxq3 1 0 1

dx3 0x3 0x3

0xy1 0x15 0xq3

Since the Jacobian for the above transformation equals one we can replace d3r;d3r,d3r;
by d3r,d3r,d3ry5.
And we can write 7, — 75 using the new variables 7;,and 7,5 :

Ty —T3 =7, =T +73 =13 =T — T3

So the sixth term in the equation (3.17)

2N2 . —i(®-% (F12—713) [3 1
_L_efffg (ri2)e 1(2 ) e [ZVt(r13)+ZVs(r13)]g(rl3) d°ryd®ry,d%r;

can be written as:

_LL:fd3r1fg*(r1z)e_i(2 ) 12drﬁ’"lzfg(rﬂ)[ Ve + ] r13d3
2
=— 2LL6L3]*- EJZt + iIZS]

Where [ d3r; = L* which is the volume of the box where the system is confined. And

from equation (3.9)

fg(rlz)e <ﬁ )rlz d3ry

so the complex conjugate |* = fg*(rlz)e_i(f_k)'r12 d3ry,
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Jor = fg(r13)Vt(r13)e( )r13d3 (3.18)

= [ g(ri3)Vs(r3)e’\2 - )”3d3 (3.19)

Therefore
(Pal1%a) = =By = 251" [2120 + 71 (3.202)
(WS|H W) = =By + 21 [ + 2o (3.200)

3 1
<\Ptot|\7{|\ytot) = Z(‘Palgfl\ya> + Z(‘Pslj{ll}ls>

3 2N?

= —Bo = 22T [Fac + 3has] 5

12N

BT B+ 2 (3.21)

Noting that Nand N - \/iz Equation.(3.21) reduces to:

(Ttotwﬂq’tot) = - _‘_] Jor — 8L3 J% 2 (3-22)

81L3

3.3 BINDING ENERGY FORMULA FOR A DEUTERON
IMMERSED IN A VAPOR OF NUCLEONS.

All the above calculations were done for one external neutron, to include the

contribution of other nucleons in the vapor we assume that there are n nucleons in the
volume L3, so we can use the number density p = Ln—3 to include all nucleons in the vapor,

so the energy in equation (3.22) can be written as:
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E = (Peoel H[Wior) = =Bo =2 p.J" Jor = 591" Jas (3.23)
and hence the binding energy formula for a deuteron immersed in a nucleon vapor by

considering the Pauli blocking shift becomes:

B(p) = —(Vroel H Weor) = Bo +2p.1" Jae + 501" Jas (3.24)

The integrals J, ], and ],s depend on the wavevectors Kand k for the deuteron and the
free nucleon, and these quantities depend on the system temperature. Therefore, we will
find the statistical average over all momentum space, we will use the Nuclear Statistical
Equilibrium (NSE) and the chemical potentials for ideal Bose and Fermi gases [24]. All

of these calculations will be done in the next chapter.
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CHAPTER 4

THE CENTER OF MASS MOMENTA OF DEUTERONS
AND NUCLEONS

In the previous chapter we derived the formula for binding energy for a deuteron

immersed in a vapor of nucleons by taking into consideration the Pauli blocking effect.
B(p) = Bo +=p.J" Jac + 591" Jas (4.1)

The integrals J,J,; and ], were defined in equations (3.9), (3.18), and (3.19). All of these

equations depend on the quantity % — k , where Kand k are the wavevectors for the

deuteron and the free nucleon respectively.

In this chapter we will evaluate the integrals ], ], and ],

] = fg(r)ei(jf d3r (4.2)
Jat = [ gV (r)e@7 a3y (4.3)
Jas = [ g(r)V,(r)ei97a3r (4.4)

N R

Where (2 =2_% depends on the system's temperature. Therefore, to evaluate the
integrals we will find the statistical average for the exponential functions that include Q;

(ei‘jf). In our system we have a nucleon (which is a fermion) with momentum Ak and a
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deuteron (which is a boson) with momentum AK. So we will use the statistical mechanics

of Fermi and Bose gases.

To find the average values of physical quantities for a system composed of fermions, we
should use the Fermi-Dirac distribution function [25]. Suppose that we have a system
composed of A fermions with single particle energies labeled as ¢4, €,, ... g4, the Fermi-

Dirac distribution function is given by

1

frp = NICEn (4.5)

Where u is the chemical potential, and g = ﬁ kg is Boltzmann constant and T is the
B

temperature. From equation (4.5) we can notice that the Fermi-Dirac distribution function
cannot be more than 1 or less than 0. At low temperatures (very close to absolute zero T
= 0) the behavior of the function depends on the value of (g; — ). If (¢, —u) < 0 and
le; — ul » kgT, the Fermi Dirac distribution function tends to its maximum 1. But if

(& —w) > 0and |g; — u| > kgT, the function tends to its minimum 0 [25].

At these low temperatures (T =~ 0), fermions are not like bosons they cannot share the
same state because of the Pauli exclusion principle. But they can occupy the lowest
distinct energy states up to the Fermi energy & which is the energy of the highest

possible occupied state [23].
In this case, the Fermi-Dirac distribution function is defined as

FD =0, &> &g
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To find the average values of physical quantities for systems composed of bosons, we
have to use the Bose-Einstein distribution function [25]. For a system composed ofcA’
bosons with single particle energies labeled as £;, ¢,, ... €4 and chemical potential £, the

Bose-Einstein distribution function is given by

1

for = i (4.6)

At low temperatures (very close to absolute zero T = 0), a large fraction of bosons
accumulate in the ground state which leads to the phenomenon of Bose-Einstein
condensation. Such phenomenon cannot happen in a Fermi gas because of the Pauli

exclusion principle.

As we see in the equations (4.5) and (4.6) for fermions and bosons, they look the same,
but they only differ in the negative sign in the denominator. So the derivation of (e“'”)

is similar to derivation of(e‘k7/2). Now we can start deriving (e =) using the Fermi-

Dirac distribution function.

4.1 EVALUATION OF (e!K7/2)aAnD(e~tK")AT HIGH
TEMPERATURES

As we mentioned above we can derive (e“'”) using the Fermi-Dirac distribution
function. In this model, the gas consists of non-interacting indistinguishable fermions. At
absolute zero (T=0), the Fermi-Dirac distribution function has a special behavior; it is
unity for all states with € < u and zero for all states with € > p. We will discuss this case
in section 4.3.
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At any higher temperature, some particles will occupy higher energy states above the
fermi energy. In our work we consider an ideal Fermi system of n non-interacting

particles in a cubical box of volume L3 with a wavefunction of the form
- 1 -
Y () = L37€lk'r (4.7)

The k is the wave vector of the particle and 7 is the position vector. The wave vector

components can be written as:
=—n,, k,=—n, (4.8)
Where n,, n,, and n, are 0, +1, 2, ....

The number of allowed plane wave states in a volume element d3k is

dn = 4 (i)3 43k (4.9)

2

Where the number 4 is the spin-isospin degeneracy factor for nucleons. It is a weight

factor that arises from the internal structure of particles such as spin. For nucleons,

2 X 2 = 4 the factors of 2 come from the two spin states and the two isospin states of the
nucleons, which are the proton and the neutron. Therefore, the total number of nucleons

(A) is given by

A =4 (i)3 [ frp d3k (4.10)

—_ik# 4 (L
and the average value (e ") =— (—
A \21

3 2 o
) fe frp dk (4.11)
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To find (e‘iw) at high temperatures we will use the method adopted by Jagaman et
al[6]to expand the Fermi-Dirac distribution function. Using the same method we can find

the chemical potential u at high temperatures.

At high temperatures [(g; — u) < kgT], the Fermi system is said to be partially

degenerate and hence the occupation probability for the state &; is much smaller than
. (gi—1)

unity [1@7 K 1].

The expansion below is suitable for such cases.

— = i o(—1)"x", where|x| < 1 (4.12)

We can find

1 e_ﬁ(gi_#)

feo = eBlei— 1) 4+ 1 - 1+ e-Blei—w)

— e—ﬁ(fi—#)[l — e Blei—) 4 o=2B(ei-1) _ ]

= e B _ p=2BE1) 4 =3Bl .4 (—1)MHlemBlEmH) 4.

=161 G- Q) () @9

Where f(3)=embEw (4.14)

n

The temperature T is implicitly included in § = —
B

Substituting equation (4.13) in equation (4.11), we get
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(e—iﬁf> — %(L)g U‘ e—iz.?‘f(T) d3k — J‘e—iﬁ.?f (g) d3k + -

(=)™ [ e—iﬁff (%) 3k + -] (4.15)

(i)3 [ — Iy + -+ (=)™, + -]

2T

4
A

Where I, is given by

-, (T
In — je—Lk.rf (;) d3k

— enu/kBTfe—iE.Fe—nhzkz/kaBT d3k (416)

Now, we will evaluate the integrals between the brackets in equation (4.15) by finding a

general formula for the nt" integral I,, instead of evaluating them one by one.

We assumed there is no interaction between the nucleons so the single particle energy

& = % is purely kinetic. To find the integral in equation (4.16), we will use completing

the square technique

—nh2k? -
—ik.7
2mkgT 2kaT

—nh? [-’ ikaTF]2 mkgTr?
nh? 2nh?

(4.17)
After collecting the exponents, we can substitute equation(4.17) in equation (4.16) to get

—nh? [—> imkgT?
I, = — gW/kpT —kaTrZ/Znhzfe kaBTl nfz ] d3k (4.18)

To simplify the integral in equation (4.18), let us set
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imkgTx
|(ux = kx n:‘2
7= E n lm:;Tr — 4“3; _ ky n Lm:f)lngy (4.19)
kpT
uz — kZ lmnhﬂ; Z
du, = dk,
hence du, = dk, } = d3k = d3u (4.20)
du, = dk,

Using equation (4.19) and (4.20), the equation (4.18) becomes

-nh?u2
_ 2 2 —
I, = eMH/kpT g—mkpTr?/2nh Je 2mkpT ({31

—nhZu?
_ 2 2 (o] —_—
— enu/kBTe mkgTr</2nh (47.[) fo u2e 2mkgT dy

We can solve the integral using the following formula:

Vi

Jy vie=dv = 7 (4.21)
Where c is a constant
So equation (4.18) will be
I, = enli/kBTe—kaTrz/Znh2 (41) nf = (4.22)
(smig)
Now, let us evaluate A by substituting equation (4.13) in equation (4.10)
3
A=4(2) UFMdk—[f(2)dk+[F(3)d%k =
1 ™Y d3k + -
+(-D" [ (5) d¥k + -], (4.23)
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=4 (i)s [11 — L+ -+ (D", + ]

f (%) is defined in equation (4.14).

The general formula for the n™ integral I, is
T
I = ff(—) A3k = fe‘"(gi‘”)/"BT d3k
n
— en”/kBT(47T)f kze—nhzkz/kaBT dk
0

Vi

= e"#/kpT (41) —
4( nh? )
kaBT

(4.24)
Where we used the formula of equation (4.21) again. As a result, using equations (4.10),
(4.11), (4.15), (4.23) and (4.24), (=7} is given by

. 4(i)3[11—12+13—14+15—16+17—---]
(e—lk.r> — _\2m

LN3[r  r ot r ol ot ot
a(s2) [H-B+B -1+ 1 =1+ 15— ]

<e—i%.17) — (I =L+ I3 =1y +Is—Ig+1;—-] (425)

[ -I+ 15— 14+ T+ 15— ]

It is sufficient to take the first seven terms (n = 7) in the above equation as it will be

shown later in chapter 5.

K.
Now, we can use the same method to derive (e*z") which is defined as

K 3 K
(€)= 5 (52) S e fos d°K (4.26)
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Where A’ is the total number of bosons (deuterons) in the boson gas and is given by

A =3 (i)3 [ for d3K (4.27)

Where the number 3 here is the spin degeneracy factor for the deuteron. Using the
expansion of equation (4.12), we can make the high temperature expansion for the Bose-

Einstein distribution function with the chemical potential u'and single particle energy
h2k? h2k?
L7 22m) ~ 4m

1 e—B(E-1")

N = e Plé-u’ -B(&—u'
for = e = mopaen = ¢ P14 e D ]

— e~ B&u) 4 o=2B(&i-1") 4 o—3B(&i—1') 4 ...

=f(T)+f(§)+f(§)++f(£)+ (4.28)

Where f (%) = e B(&i-1)

In a similar way to the derivation of (e‘i’;-F), substituting the expansion of equation

(4.28) in equation (4.26)

=) [ s () ()

D) et Famak + 1o (D) @k + [ o5 F (D)@K 4 ]

3 (L3
=2 () Dityatys+ ot +o]

38



B,
wherey, = [e'2"f (%) d3K

K .
i

= [ ez [emPlE )] @3K = feig'F[e‘”/"BT(éi‘“')] d3K

2k2

By substituting the single particle energy &; = i

4m

and using completing the square

technique, the integral y,, will be

—nh2u2
/ _ 2 2 oo o ——
Yy = i /kBTe mkgTr=/4nh (47.[) fo uZe amkpT Jy

— enu’/kBTe—kaTr2/4nh2 (41) Vr

EEe——y T 4.29
4(%)3/2 ( )

Now let us evaluate A’ by substituting equation (4.28) in equation (4.27)
a0 =) Dtk = =3 () T+ () £ (3) ik
-3 Pl [ @ ews T Qe -]

3 L 3 I} ’ 1] ’
=;(—) ity +ys+-+yn+-.]

2T

where

Yn = J[f (%)] d3K = J[e_nﬁ(éi_#’)] d3K

Now we will evaluate the general formula for the nt*integral y;,.

21,2
By substituting the single particle energy &; = hM':l

and using completing the square

technique, the integral y,, will be
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-nh2K?

Vo = e”“'/"BT(4n)f K?e 4mksT dK
0

V1

’

= e /kBT (47) ———

4_< nh2 )
4mkpgT,

(4.30)

As a result, using equations (4.26), (4.27), (4.29) and (4.30), (e“?f/z) is given by

L\3
i,?f/z) _ 3(5) [y1+y2+Y3+yatys+ye+yr+--]

(e

3
3(%) [yi+yo+y3+ya+yi+ye+ys+--]

_ ity +ys+yatys+yetys+oo-] 431
- ! ! ! ! ! ! ! ( . )
[V1+y3+Y5+Va+yi+ye+yy+- |

Also, it is sufficient to take the first seven terms only (n = 7) as we will show in chapter

5.

By substituting equations (4.22) and (4.24) in equation (4.25) and taking the first seven

terms, we get the final form of (e =)

<e—lk.‘)‘> —
n3/26u/k3T[e—kaTr2/2h2_ 31/Zeu/kBTe—kaT‘r2/4h2+ 31/262u/kBTe—kaTr2/6h2_ 31/2e3#/kBTe—kaTr2/8h2+A..
2 3 4
w2 \3/?
4kaT)
3
nfe”/kBT[l— 31/261,L/kBT+ 31/2e2u/kBTe—kaTr2/6h2_%ﬂe3u/kBTe—kaTr2/8h2+_,_
2 3 4
w2 \3/?
<4kaT>

2 2 2 2 2 2 2 2
[e—kaTr /2h?% _ 31/Zeu/kBTe—kaTr /4h? 31/Zezu/kBTe—kaTr /6h% _ 31/Ze3u/kBTe—kaTr /8h +]
2 3 4

[e—kaTrZ/th_ 231/_Zeu/kBTe—kaTr2/4h2 +331/Zezu/kBTe—kaTrZ/shZ_ 31/Ze3lt/kBTe—kaTr2/8fzz _,_]
4
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[e—kaTTZ/ZhZ_ 31/Zeﬂ/kBTe—kaTr2/4h2+ 31/262#/kBTe—kaTr2/6h2_ 31/2e3u/kBTe—kaTr2/sh2+...]
2 3 4

1 1 1
_ u/kgT 2u/kgT _ 3u/kgT ]
[1 23/2e B +33/2e B 43/Ze B’ +

By taking the first seven terms, we get

pA [%e,u(n—l)/kBTe —mkpgTr? /Znhz]
n

(e—ik.r) —

(4.32)

A SRR
n

Following the same steps, by substituting equations (4.29) and (4.30) in (4.31) we get

1 ! — — 2 2
Z%:l[n3/zeu (n—-1)/kgT g—mkgTr?/4nh ]

(eiR7/2y (4.33)

Sher[aget D/ kaT]
n

Now, we can calculate the integrals in equations (4.2), (4.3) and (4.4) using the equations

(4.32) and (4.33) for (e~*7) and (e‘K7/2). But first we will evaluate the chemical

potentials u and u'.

4.2 Chemical Potentials for the Deuterons and
Nucleons.

In our work we assume thermal and chemical equilibrium and we ignore the interaction
between nucleons except for the formation of clusters. Moreover, we viewed the nuclear
matter at low density. The Nuclear Statistical Equilibrium (NSE) model suits these
conditions [26-28] to relate the chemical potential of the nucleons to the chemical

potential of the deuteron.
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Due to statistical equilibrium there is chemical equilibrium between the clusters and the

nucleons in the vapor [24] such that
Uec = Z.up + N,un (434)

Where uc, 1, and p, are the chemical potentials for the clusters, protons, and neutrons

respectively. Z and N are the numbers of protons and neutrons in the cluster.

Because of the assumed symmetry of nuclear matter, the chemical potentials of the

protons and neutrons are equal p, = u, = w, so that:

Mctuster = A 1 (4-35)

Where A=N+Z.

For the deuteron A =2, so

I = Udeuteron = 2 U (4.36)
Now, the number density for the deuteron p, is given by

_A _ g
Pa =13 = oo

J fad®*k (4.37)

where A’ is the total number of deuterons in the system, g = 25+ 1 = 3 is the spin

degeneracy factor of the deuteron, and f; is the probability of finding the deuteron cluster

. . . , h2k2
with kinetic energy ¢ = . [24]

‘ 1

fa = o (4.38)
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B(p) is the density dependent binding energy of the deuteron when embedded in the

nucleon vapor.
So all equations with derivations depend on fzgshould be modified to include B(p).

In all equations include u" we can replace u’' by u’ + B(p), and this is clear if we

compare equation (4.6) with equation (4.38). But i’ for the deuteron equals 2u
p' — 2u+B(p) (4.39)

In the equation of binding energy B(p), we found that it is a function of the total density

p. But we can also notice that the values of (e“?f/z) and (e‘iw) depend on the binding
energy. Therefore, in order to achieve self-consistency many iterative operations should
be performed when calculating the binding energy, and the value of the total number
density of the system that achieves self-consistency is then used to get the binding energy
of the deuteron immersed in nuclear matter. The iteration stops when the difference

between two successive values of B(p) is less than 0.001 MeV.

Finally, we will find the formula for the chemical potential u of the free nucleons. The
chemical potential of free nucleons is calculated using the equation of state for an infinite

system of non-interacting nucleons at low density [24]:

u(T,p) = kgT (ln (42) + 322, by (%")l> (4.40)
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2mh?

1
— T) ? is the thermal wavelength of the nucleon in the gas, and it is
B

where At = (

defined as the mean de Broglie wavelength of the nucleons in an ideal gas evaluated at

temperature T.

The b,,'s are the expansion coefficients that were obtained by using the method of series
inversion. These coefficients were evaluated in [24]. In our work we will stop at n = 6.
From the table (4.1) below we can notice that the values of b,rapidly decrease as the

index n increases and they are alternative.

In [24] it was shown that at low temperatures (T< 4 MeV) the contribution after the sixth
term is negligible at low densities, for example at T = 3 MeV the equation (4.40) is
convergent at densities up to 0.12 nucleons/fm3, while for higher temperatures such as

T =6 MeV it is convergent at higher densities up to 0.2 nucleons/fm3 .

n b,
n=1 0.3535533905933
n=>2 —0.0049500897299
n=3 1.483857713 x 107
n=4% —4.4256301 x 107
n=>5 1.006362 x 1077
n==o6 —4.272 x 10710

Table 4.1: Numerical values of the coefficients b,,
calculated for the ideal Fermi gas
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4.3 EVALUATION OF (e'X7/2) AND (e *kT)AT ABSOLUTE ZERO

TEMPERATURE

According to Bose-Einstein condensation phenomenon, at absolute zero temperature

bosons tend to accumulate in the lowest possible energy state, and they have zero

momentum #K = 0 [6, 29]. Therefore
(elF7/2) =1 (4.41)

At absolute zero temperature, fermions can occupy the lowest distinct energy states up to

the Fermi energy & which is defined previously at the beginning of this chapter.

In this case, the Fermi-Dirac distribution function is defined as

(1, E< &p
e (4.42)
Substituting equations (4.42) in equation (4.10 ) and (4.11), we get
3
A=4(2) [y d%k (4.43)
_iR 4 (L3 ;kp _ia
(e~ KTy = . (;) fo F o=iki 43 (4.44)

Where A is the total number of nucleons, and ky is the Fermi wave vector
corresponding to the Fermi energy . To evaluate this integral and without any loss of

generality, we will assume that the vector 7 in equation (4.44) is directed along the z-axis,

—

and so we have e kT = g~ikrcosd |y spherical coordinates, the volume element in
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equations (4.43) and (4.44) is d3k = k?sinfdkdfde in k-space. Using spherical

coordinates we can evaluate the integral analytically, and the result will be

—ik#\ _ 3cos(kgr)  3sin(kgr)
(™) =—55 G (4.45)

It is left to find k. To do so, let us recall that the total number of nucleons A is given by
(LN ke g3, A (L\34_, 3
A=4(2) ;7 d%k=4(5) smkd (4.46)
But the number density of nucleons inside the cubic volume L3 is given by
A
p=2% (4.47)

Substituting equation (4.46) in equation (4.47) and solving for kp

o= (22)" @

Substituting the result of equation (4.48) in equation (4.45) we get

(e~ KTy = - (4.49)

Using equation (4.41) we get

2 \1/3 2 \1/3
3 cos((gn2 p) r) 3 sin((gn2 p) r)
(3112!7)2/31,2 (_37[22p) r3
2

<ei§.F) — <eif.F/2) (e—i%.F) — (4.50)
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CHAPTER 5

USING GAUSSIAN POTENTIAL AND THE ISOLATED

DEUTERON WAVEFUNCTION.

The binding energy in equation (4.1) is evaluated in general for any form of potential.

In our recent work we use a Gaussian potential which is physically more reasonable.

We can write the Gaussian potential as follows
V(r) = —V,e /e (5.1)

Where 1, and a are the depth and the range of the potential respectively. The values
of V/, and a can be determined using the variational principle and they can be adjusted
to give the experimental value for the binding energy of the deuteron as we will do

later in this chapter.

The trial wavefunction for the relative motion between the proton and the neutron
inside the nucleus should be suitable to the form of the potential. So a Gaussian
wavefunction is used as follows

g(r) = Ae™ (5.2)

3
Where 7 is Gaussian parameter and A is the normalization constant A2 = (27")2
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5.1 FINDING THE VALUES OF THE PARAMETERS V,,, Vi, a;, ag, 7

In this chapter we will use the isolated deuteron wavefunction so the parameter n is

constant and does not vary with changing the vapor density.

For the ground state of the deuteron, the Hamiltonian can be expressed with the triplet

interaction in the following equation

h12 =T+ Vt = _(hC)ZVZ —Vote_rz/atz (53)

2uc?
Where u is the reduced mass.

The value of a; is allowed to vary in the range 1.5 > a; > 3 fm [30], and we choose a;
to be 2.05 fm as in [31]. V,,; and n can be adjusted to give us the correct binding energy
of the deuteron and to ensure that it is a minimum. The energy for the isolated deuteron

(which is the negative of the binding energy) is

3
3(hc)? 2 /2
E =< glh;lg > =220 — v (—21—) (5.4)

2 217+1/at2
Where g is the trial wavefunction defined in equation (5.2)

Using the variational principle we derive the energy in equation (5.4) with respect to n

and by solving the equations Z—s = 0 and E(n) = -2.2 MeV, we find that the values of 7

and V,; which minimize this energy are V,, = 47.7 MeV and n = 0.0936fm™2. The

energy E(n) as a function of n is displayed in the figure (5.1).
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Figure 5.1: The energy of the isolated deuteron as a function of 7.

The value of i doesn't depend on the density p
If we compare our results with the results in other references we find, for example, that in
[32] the values of the depth and the range are V,; = 46.8 MeV, a; = 1.94 and the
corresponding i equals 0.093 fm ™2 which is close to ours, and the calculated binding

energy in [32] is 2.133 MeV.

As we mentioned earlier in chapter 3, for the deuteron immersed in a vapor of nucleons,
nucleons inside the deuteron interact with each other via the triplet interaction only,
whereas at the same time they interact with the free nucleons via the triplet and singlet
interactions and we should take this into account when we write the potential. So, in

addition to the triplet potential we have the singlet potential with depth Vs and range a,
Ve(r) = —Vose /" (5.5)

The singlet state is not bound, it has a negative binding energy which is about 0.06 MeV

[33], it exists only for a very short time in collisions. For the singlet state the range is 2.4
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fm [31] and we can adjust the depth of the well until we have only one eigenstate with
energy 0.06 MeV. We found that the required depth for the singlet interaction is 28.3
MeV. For the square well potential used in [10], the depth for the triplet interaction is
35 MeV and the range is 2.05 fm. While for the singlet interaction for the same potential,

the depth is16 MeV and its range equals 2.4 fm.

Now, we have found all parameters we need to find the Mott density for the deuteron
using Gaussian potential with a range (a;) of 2.05 fm and depth (V,;) 47.7 MeV for
triplet interaction, and a range (a,) of 2.4 fm and depth (V,5) 28.3 MeV for the singlet

interaction.

And the value for the parameter n used in the isolated deuteron wavefunction is

0.0936fm™2.

In this case where the wavefunction is not allowed to vary with the vapor density we will
use the same value of n (0.0936fm™2) at all densities. And we will use the formula for

the energy in equation (3.23)

3 1
(Prot H ¥eor) = =Bo = gp-J"Jar = gp.J"Jos = =B(p)

Where B, in this case is constant and its value equals 2.2 MeV which is the binding

energy for the isolated deuteron in the ground state, and p is the total vapor density.

], ]2t , Josare the integrals defined in equations (3.9), (3.18), and (3.19). These integrals

depend on the average quantities (e‘iw) and (e“?'?/ 2) where these quantities depend on

the density of the free nucleons (pf..). So for a certain density p we make an iteration
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over the values of pf,... which are less than or equal to the total density p (pfree < p),

and the iteration will stop at a certain value of psy.ce.

At this value of pf,.. the density of free (unbound) nucleons pf,... plus the density of
bound nucleons p,, which join together to give the deuteron, should be very close to the
value of the total density p we start with (with a relative error (r) less than 0.01). In other

Ptot—P

words, the iteration over py,.. stops when the value r = is not larger than 0.01,

wWhere peor = pPrree T+ 2pq. The factor of 2 in the equation reflects the fact that the

deuteron contains 2 nucleons.
pq is defined in equation (4.37)

A’
Pa :F (2 )3ffdd3K

1

where fq = eB(E-u'-B(p))_q

and u' =2u

At this value of pf,.., which achieves self consistency for p;,,, we use equation (3.24)

3 1
B(p) = _(Ttotl}[ltptot) =B, +§p-]*-]2t + gp']*'IZS

to calculate the deuteron binding energy. To achieve the self consistency for binding
energy another iterative operation is performed. The iteration of the binding energy
should stop when the difference between two successive values for binding energy does

not exceed 0.001 MeV as we discussed in section 4.2.
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5.2 BINDING ENERGY RESULTS USING ISOLATED DEUTERON

WAVEFUNCTION

In this section, we will use the values of V., Vs, at, as, and n obtained in section 5.1
above to investigate the binding energy when the deuteron wavefunction is not allowed to

vary with the vapor density.

We will plot the binding energy of the deuteron in equation (3.24) versus the density p
B(p) =B, + %P-]*-IZt + %p']*'IZS
Where ], ],t, and ], are defined in equations (3.9), (3.18), and (3.19) respectively.

But at first we will show why we take the first 7 terms in equations (4.31) and (4.33). In
the figure (5.2) below we plot the binding energy of the deuteron as a function of the

vapor density (p) at T = 20 MeV using different number of terms.

" ) T ' —;'"n1
—a—n2ZH
2F ——n3
~o-nd
5|
T =20 MeV |
1.5¢ K#0 —n7
S
©
=
w
o 1
0.5F
0 \.SEL

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
P
(nucleons/fm®)

Figure 5.2: Deuteron binding energy as a function of p for different number
of terms in the high temperature expansion in equations (4.31) and (4.33).
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It is clear that when we take the first six terms (the black line) and the first seven terms
(the red line) in the expansion we almost get the same curves, which indicates that it is
enough to take the first seven terms to achieve the convergence of the series. But for less

terms the series is divergent.

In the following figures (5.3 - 5.5) we plot the results obtained in the present work using
Gaussian potential and the results obtained in [10] using square well potential for nonzero
CM momentum (K#0) and for zero CM momentum (K = 0). In these plots the

wavefunction is not allowed to vary with the vapor density.

—a— reans from [10].;<=0
i —o—results from [10) K=0 |
2 —=— present work for fixed n, K=0
— present work for fixed n, K20
1.5}
s T =10 MeV
w
©2
< 4t
0.5¢
o0 0.005 0.01 0.015 0.02 0.025

P
(nucleonslfm:‘)

Figure 5.3: Deuteron binding energy at T=10 MeV. The results from [10] for
a square well potential are given by the red line for K#0 and the black line for
K=0. The present results for a Gaussian potential are shown by the blue line
for the case of K#0 and the green line for K=0. For both potentials, the
wavefunction is not allowed to vary with the vapor density.
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Figure 5.4: Deuteron binding energy at T=15 MeV. The results from [10] for
a square well potential are given by the red line for K#0 and the black line
for K=0. The present results for a Gaussian potential are shown by the blue
line for the case of K#0 and the green line for K=0. For both potentials, the
wavefunction is not allowed to vary with the vapor density.

4 ) ' ) —e—results from [10J,K=0 |
5 —e— results from [10),K=0
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Figure 5.5: Deuteron binding energy at T=20 MeV. The results from [10] for
a square well potential are given by the red line for K#0 and the black line for
K=0. The present results for a Gaussian potential are shown by the blue line
for the case of K#0 and the green line for K=0. For both potentials, the
wavefunction is not allowed to vary with the vapor density.
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From the figures above (5.3-5.5), we can see that the behavior of binding energy in all
cases is the same; it decreases linearly with the vapor density. In the present work, the
deuteron immersed in vapor of nucleons has higher Mott density at low temperatures and
it can survive more before it dissolves. But at high temperatures it has lower Mott density

than in [10] when K.# 0.

When we compare the results for K=0 with K#0, it is clear that the Mott density for the
zero CM momentum case where the deuteron is assumed to be at rest is less than the case
where the CM momentum does not equal zero. This is reasonable, because when the CM
momentum of the deuteron equals zero the momenta of the nucleons inside this deuteron
also equal zero which are the minimum and the effect of Pauli blocking will be large so

the deuteron will dissolve.

In general, we can notice from the figures that the difference in the Mott density between
the two cases; the square well and Gaussian potentials decreases as the temperature

increases.

To see what happens at absolute zero temperature (T = 0 MeV), we plot the deuteron

binding energy in figure (5.6).

According to Bose-Einstein condensation phenomenon, at absolute zero temperature (T =
0) bosons tend to accumulate in the lowest possible energy state, and they have zero
momentum (K = 0 ) which is already included in the calculations and in the matlab code.

For this reason, there is no need for the case of nonzero CM momentum.
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Figure 5.6: Deuteron binding energy at T=0 MeV. The results from [10] for
a square well potential are given by the red line. The present results for a
Gaussian potential are shown by the black line. For both potentials, the
wavefunction is not allowed to vary with the vapor density.

The behavior of binding energy at T = 0 MeV in figure (5.6) is similar to its behavior at
higher temperatures. The Mott density for present work is higher than the result reported

in [10].

In chapter 6 we will study the behavior of the deuteron binding energy when its

wavefunction is allowed to vary with vapor density.
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CHAPTER 6

USING THE VARIATIONAL PRINCIPLE TO DETERMINE THE

GAUSSIAN WAVEFUNCTION.

In this chapter we will find the binding energy for the deuteron immersed in a vapor of
nucleons when the Gaussian wavefunction is allowed to vary with the density of the

vapor, that is different from that of an isolated deuteron.

6.1 FINDING THE VALUE OF 1 USING THE VARIATIONAL

PRINCIPLE

The value of n in this chapter is not fixed so we will use the variational principle to
minimize the deuteron energy with respect to n at each density. We will use the same

formula for energy in equation (3.23) with V;, Vi, a;, as obtained in section 5.1
3 % 1 *
E = (Yot H |[Wror) = —Bo — gp-] Jat _gp-] J2s (6.1)

Where p is the total density of the vapor, ], ] ,].s are the integrals defined in equations

(3.9), (3.18), and (3.19).

Since ],]5¢,J2sdepend on the density of the free nucleons (pfre.), the value of pgpe,
which achieves the self consistency for the total density can be found using the same
method explained in section (5.1).The value of n in this chapter is not fixed and hence the
initial value for the binding energy(B,) is not a constant , it depends on the parameter 7.

From equation (5.4)
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At the value of pf,.. Which achieves self consistency for p,,, defined in section 5.1, we
minimize the deuteron energy with respect to n to find its minimum value. We do this by
plotting the deuteron energy in equation (6.1) versus n at each density p and find the

minimum value for energy.

To achieve self-consistency for the energy another iterative operation is performed. The
iteration for energy should stop when the difference between two successive values for

energy does not exceed 0.001 MeV as we said in section 4.2.

For each p there is a certain value of n where the deuteron energy has its minimum (or
the binding energy has its maximum). Which indicates that the value of n varies with the
density p. We illustrate this by plotting the energy in equation (6.1) as a function of n for
two different densities; p = 0.006 nucleons/fm3and p = 0.01 nucleons/fm?3at the

same temperature T= 10 MeV with K = 0. The results are presented in the figures(6.1)and

(6.2). -1.5018
-1.502}
T=10 MeV
-1.5022} * K=0 3
p=0.006 nucleons/fm
< -1.5024f -
LY
= 5
W _1.5026}
-1.5028} a .
' X: 0.0824
4503k : _.\.r,_-1.503 |
-1.5032

0.081 0.0815 0.082 0.0825 0.083 0.0835 0.084 0.0845
1 (1m?)

Figure 6.1: Deuteron energy as a function of n at p = 0.006
nucleons/fm®, T = 10 MeV, K = 0.
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Figure 6.2: Deuteron energy as a functionof pat p = 0.01

nucleon/fm®, T = 10 MeV, K = 0.
From the figures (6.1) and (6.2) above, it is obvious that the value of n which minimizes
the energy depends on the vapor density. At p = 0.006 nucleons/fm?3 the energy has
its minimum E = —1.503 MeV when n = 0.0824 fm~2, while at p = 0.01 nucleons/
fm3 the minimum energy E = —1.094MeV occurs when n = 0.0752 fm™~2. The two
values were obtained at the same temperature T = 10 MeV and with zero CM

momentum.

The same method is followed for other densities to find the value of n and its
corresponding minimum energy. In the table (6.1) we summarize the results obtained for

different densities at T = 10 MeV with K = 0.
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Total density n(fm=2) The corresponding
p (nucleons/fm?) minimum energy E
(MeV)
0 (isolated deuteron) | 0.0936 -2.2
0.001 0.092 - 2.080
0.002 0.090 -1.959
0.003 0.0880 -1.840
0.005 0.0840 -1.612
0.006 0.0824 -1.503
0.007 0.0810 -1.396
0.008 0.0790 -1.293
0.01 0.0752 -1.094
0.011 0.0730 - 0.9992
0.012 0.0720 - 0.9069
0.013 0.0700 -0.8174
0.015 0.0660 - 0.6464
0.016 0.0650 - 0.5649
0.018 0.0610 - 0.4099
0.019 0.0600 - 0.3362
0.022 0.0542 - 0.1308
0.023 0.0536 - 0.06758
0.024 0.0510 - 0.00672
0.025 0.0492 0.05161

Table 6.1: the values of n and their corresponding minimum energy for
each p at T = 10 MeV with K =0.
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From the table (6.1) we can notice that the value of n decreases as the vapor density

increases.

Each value of 7 is found by plotting the energy of the deuteron versus the parameter 7 at
each density p as shown in figures (6.1) and (6.2) for p = 0.006 nucleons/fm3 and for
p = 0.006 nucleons/fm3,, then the value of n which minimizes the energy is recorded
with its minimum energy. After that we plot the negative of the third column in the table
(the binding energy) versus the total density p to find the Mott density; where the

deuteron dissolves and becomes unbound.

6.2 BINDING ENERGY RESULTS WHEN THE WAVEFUNCTION IS
ALLOWED TO VARY WITH THE VAPOR DENSITY

The results in table (6.1) at T = 10 MeV beside the results at other temperatures are
presented in the figures (6.3-6.5) below. In each figure, we plot the deuteron binding
energy versus the vapor density (p) for zero CM momentum (K = 0) and for nonzero
CM momentum (K#0). We compare the results for the case where the wavefunction is
not allowed to vary (n is fixed) with the case where the wavefunction is allowed to vary

(n is variable).
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Figure 6.3: Deuteron binding energy at T=10 MeV. The present results for fixed n
are given by the red line for K#0 and the black line for K=0. When n is variable,
the present results are shown by the blue line for the case of K#0 and the green line

for K=0.
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Figure 6.4: Deuteron binding energy at T=15 MeV. The present results for fixed
n are given by the red line for K#0 and the black line for K=0. When n is
variable, the present results are shown by the blue line for the case of K#0 and the
green line for K=0.
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Figure 6.5: Deuteron binding energy at T=20 MeV. The present results for fixed
n are given by the red line for K#0 and the black line for K=0. When n is
variable, the present results are shown by the blue line for the case of K#0 and the
green line for K=0.

From the three figures (6.3 - 6.5) above, we can see the effect of changing the parameter
n with the vapor density on the shape of the binding energy curve. For this case, the
binding energy decreases nonlinearly as the density increases, while for isolated deuteron
where n is fixed, the binding energy decreases linearly. We can also notice that the
deuteron will survive more when the Gaussian wavefunction varies with the vapor
density. The decrease in the Mott density for the zero CM momentum case is expected

for the same reasons explained previously in chapter 5.

Now, we will make a plot for the deuteron binding energy as a function of the vapor

density at absolute zero temperature (T = 0 MeV).
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Figure 6.6: Deuteron binding energy at T = 0 MeV. The black line
shows the present results when n is fixed and the blue line for the

present results when n is variable.

The same behavior for deuteron energy can be noticed from the figure (6.6) at T = 0

MeV. The Mott density is larger for the case at which the deuteron wavefunction is

allowed to vary with the vapor density.

There is no separate curve for the zero CM momentum case (K=0), because at absolute

zero temperature all bosons tend to accumulate in the lowest possible energy state, and

they have zero momentum (K =0).
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Chapter 7

RESULTS AND CONCLUSION

In this chapter, we will summarize our results for the Mott density, where the deuteron
dissolves and its binding energy equals zero, using Gaussian potential and compare them

with the results reported in [10] by using the square well potential.

The new thing in our work is including the effect of the vapor density in the
wavefunction. So we will compare our results for the case where the wavefunction is not
allowed to vary with the vapor density with the other case where the wavefunction is

allowed to vary with the vapor density.

The values for Mott density for all cases can be summarized in the following table (7.1).

Temperature | CM momentum | Results obtained | Results of the | Results of the
(MeV) (K) in [10] present work for | present work
(Square well | fixed n when n is
potential) (Gaussian notfixed
potential) (Gaussian
potential)
0 0.0012 0.012 0.016
10 K=0 0.009 0.017 0.024
K#0 0.012 0.021 0.03
15 K=0 0.015 0.021 0.03
K#0 0.022 0.026 0.039
20 K=0 0.023 0.025 0.036
K#0 0.036 0.031 0.048

Table 7.1:Mott densities for the deuteron at different temperatures obtained in
the present work, along with those obtained in [10].
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From the table, we can notice that for all cases the Mott density increases as the
temperature increases, which means that the deuteron survives more at higher

temperatures.

By looking at the cases of K = 0 and K # 0 at each temperature, it is obvious that the
deuteron with nonzero center of mass momentum can survive more before it dissolves to
its constituents. The reason behind this is that the Pauli blocking has more effect in the

case of zero center of mass momentum.

The comparison between the results reported by Abdul-Rahman, Alstaty, and Jagaman in
[10] sing square well potential and the present work using Gaussian potential reflects the
effect of the potential shape on the deuteron energy. We observe that at low temperatures
the deuteron has much higher Mott density than in [10]. But this difference in the Mott

density between the two studies decreases as the temperature increases.

The effect of the dependence of the wavefunction on the vapor density can be noticed in
the last column in the table. Obviously, the Mott density for the deuteron is higher than
its value for other cases where the wavefunction is not affected by the density of the

vapor.

In this study, we used Gaussian potential and the variational principle to investigate the
effect of the surrounding vapor on the deuteron stability and to find the Mott density . We
considered that the vapor consists of nucleons and deuterons only. In the future, we can

include other clusters present in the vapor, such as helion (*He) and alpha (*He) clusters.
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Appendix A

% BE when the wavefunction is allowed to vary with the wvapor
density

hc=197.33;%blank constant

mc2=940; 3nucleon mass

Mc2=1876.12; 3deuteron mass

gamat=0.238;%fm"-2

gamas=0.1736;

Ut=47.7;%MeV potential depth
Us=28.3;%MeV potential depth

b1=0.3535533905933;
b2=-0.0049500897299;
b3=1.483857713*10" (-4) ;
b4=-4.4256301*10" (-6) ;
p5=1.006362*10"(-7) ;
b6=-4.272*10"(-10) ;

KbT=15; $Mev
beeta=1/KbT;

rho=0.04
foreta=0.045:0.001:0.048

I=rho
rhofree = 0.00000005;

while (rhofree<rho)

eta

A= (2*eta/pi) "~ (3/4);%Normalization constant for the
gaussianwavefunction

bindenerg=-1.2;%initial value
lam3=(2*pi* (hc"2)/ (mc2*KbT) )" (1.5);
eita=(rhofree*lam3) /4;

muu= (log(eita) +

bl.*eita+b2* (eita.”2)+b3* (eita.”3)+b4d* (eita.”4)+b5* (eita.”5) +b6* (
eita.”6));smuu/KT for nucleons

expmu= (eita*exp (bl*eita+b2* (eita”2) +b3* (eita”3) +bd* (eita”4) +b5* (e
ita”b5)+b6* (eita”o6)) ) ; $exp (muu/kt)
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DD=0;

while (1l)%iteration to find the binding energy(negative wvalue)

expBofrho=exp (bindenerq) ;

symsr;

Expectfermion=( (exp ( (-mc2*KbT* (r*2))/ (2* (hc"2)))) - (expmu) *exp ( (
mc2*KbT* (r*2))/ (4* (hc™2)))*(1/(2*(2~0.5))) + (expmu”™2) *exp ( (
mc2*KbT* (r*2) )/ (6* (hc”2)))*(1/(3*(370.5))) - (expmu”"3) *exp ( (-
mc2*KbT* (r*2) )/ (8* (hc™2)))*(1/(4*(470.5)) )+ (expmu™4) *exp ( (-
mc2*KbT* (r*2) )/ (10* (hc™2)))*(1/ (5*(570.5))) - (expmu”5) *exp ( (-
mc2*KbT* (r*2) )/ (12* (hc™2)))*(1/ (6*(670.5))) + (expmu”6) *exp ( (
mc2*KbT* (r"2) )/ (14* (hc™2)))*(1/(7*(770.5))))/ (1-

((expmu) /(2% (270.5)) )+ ((expmu~2) / (3*(370.5))) -
((expmu”~3)/(4*(470.5)))+ ((expmu™4)/(5*(57°0.5))) -

((expmu”5)/ (6*(670.5)))+ ((expmu”6)/(7*(770.5))));

Expectboson= (exp ( (-mc2*KbT* (r"2) )/ (4* (hc"2)))
+ ( (expmu”2) * (expBofrho) ) *exp ( (-

mc2*KbT* (r*2)) /(8% (hc"2)))*(1/(2*(270.5)))

(
+ ( (expmu”™4) * (expBofrho”2)) *exp ( (-
mc2*KbT* (r*2) )/ (12* (hc™2)) ) *(1/ (3*(370.5)) )+ ( (expmu”6) * (expBofrho
~3)) *exp ((-mc2*KbT* (r"2))/ (16* (hc"2))) *(1/(4*(470.5)))
+ ( (expmu”8) * (expBofrho”4)) *exp ( (-
mc2*KbT* (r"2) )/ (20* (hc”2)))*(1/(5* (5°0.5)))
+ ( (expmu”~10) * (expBofrho”5)) *exp ( (-
mc2*KbT* (r™2))/ (24* (hc™2)))* (1/ (6*(670.5) )+ ( (expmu”~12) * (expBofrho

76)) *exp ( (-

mc2*KbT* (r™2))/ (28* (hc™2) ) ) * (1/ (7*(770.5))) / (1+ ( (expmu"2) * (expBof
rho) ) * (1/(2*(270.5)) )+ ((expmu”4) * (expBofrho”2))* (1/(3*(370.5))) +(
(expmu”6) * (expBofrho”3))* (1/(4* (470.5)) )+ ( (expmu”8) * (expBofrho™4)
)*(1L/(5*(570.5)) )+ ((expmu”10) * (expBofrho”5)) * (1/(6*(670.5))))+((e
xpmu”12) * (expBofrho”6))* (1/(7*(770.5)))));

f=inline (exp (-

l*eta*r”2) *char (Expectfermion) *char (Expectboson), 'r");
f2=inline (exp (-

1* (etatgamat) *r"*2) *char (Expectfermion) *char (Expectboson), 'r');
f3=inline (exp (-

1* (etatgamas) *r"2) *char (Expectfermion) *char (Expectboson), 'r');

J=4*pi*A*quadl (f,0,1000000) ;
J2t=-Ut*4*pi*A*quadl (f2,0,1000000) ;
J2s=-Us*4*pi*A*quadl (£3,0,1000000) ;
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bindenerg= (((3* (hc)*2) /mc2) *eta-
(Ut* (2*beta/ (2*betat+gamat) )~ (3/2))-(0.375*conj (J) *J2t*rho) -
(0.125*conj (J) *J2s*rho))

DX= abs (bindenerg-DD)

if (DX <=0.001)
break

end

DD= bindenerg

end

$%deuteron
KE2=(hc"2/ (2*Mc2)) ;
zzz=exp (-1*beeta*bindenerqg) *exp (-2*muu) ;

ff=(Q(x) ((x.72) ./ ((zzz* (exp (beeta*KE2* (x.72))))-1)));

g2 = quadgk(ff,0,inf);
y2 =( 3*q2)/2*(3.14)"2;

rhodeuteron=2*y2
$total density

tot=2*y2+rhofree
rr=abs ((tot-I)/I)

if (rr<0.01)

plot (eta,bindenerq)
holdon

break
else

rhofree=rhofree+0.00000005;
I=tot
end

end
end
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